Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo

被引:7
|
作者
Mohring, Jan [1 ]
Milk, Rene [2 ]
Ngo, Adrian [3 ]
Klein, Ole [3 ]
Iliev, Oleg [1 ]
Ohlberger, Mario [2 ]
Bastian, Peter [3 ]
机构
[1] Fraunhofer ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
[2] Univ Munster, Inst Computat & Appl Math, D-48149 Munster, Germany
[3] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
关键词
Uncertainty quantification; Multilevel Monte Carlo; Multiscale finite elements; Porous media; Random permeability; Exa-scale; DUNE; FINITE-ELEMENT-METHOD; SIMULATION; FRAMEWORK;
D O I
10.1007/978-3-319-26520-9_15
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Uncertainty quantification (UQ) for porous media flow is of great importance for many societal, environmental and industrial problems. An obstacle for progress in this area is the extreme computational effort needed for solving realistic problems. It is expected that exa-scale computers will open the door for a significant progress in this area. We demonstrate how new features of the Distributed and Unified Numerics Environment DUNE [1] address these challenges. In the frame of the DFG funded project EXA-DUNE the software has been extended by multiscale finite element methods (MsFEM) and by a parallel framework for the multilevel Monte Carlo (MLMC) approach. This is a general concept for computing expected values of simulation results depending on random fields, e.g. the permeability of porous media. It belongs to the class of variance reduction methods and overcomes the slow convergence of classical Monte Carlo by combining cheap/inexact and expensive/accurate solutions in an optimal ratio.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条
  • [21] DESIGN UNCERTAINTY EFFECTS QUANTIFICATION USING MONTE CARLO SIMULATION
    Kamel, Hesham
    [J]. INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 11, 2013, : 173 - 176
  • [22] Uncertainty Quantification in Helicopter Performance Using Monte Carlo Simulations
    Siva, C.
    Murugan, M. S.
    Ganguli, Ranjan
    [J]. JOURNAL OF AIRCRAFT, 2011, 48 (05): : 1503 - 1511
  • [23] Robust Uncertainty Quantification Using Conformalised Monte Carlo Prediction
    Bethell, Daniel
    Gerasimou, Simos
    Calinescu, Radu
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 19, 2024, : 20939 - 20948
  • [24] Monte Carlo simulation of flow of fluids through porous media
    Jain, S
    Acharya, M
    Gupta, S
    Bhaskarwar, AN
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (03) : 385 - 400
  • [25] Multilevel Monte Carlo for two phase flow and Buckley-Leverett transport in random heterogeneous porous media
    Mueller, Florian
    Jenny, Patrick
    Meyer, Daniel W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 685 - 702
  • [26] Fast uncertainty quantification of tracer distribution in the brain interstitial fluid with multilevel and quasi Monte Carlo
    Croci, Matteo
    Vinje, Vegard
    Rognes, Marie E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2021, 37 (01)
  • [27] Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media
    Tartakovsky, A. M.
    Panzeri, M.
    Tartakovsky, G. D.
    Guadagnini, A.
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (11) : 9392 - 9401
  • [28] Uncertainty quantification for porous media flows
    Christie, Mike
    Demyanov, Vasily
    Erbas, Demet
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) : 143 - 158
  • [29] A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow (vol 3, pg 1075, 2015)
    Dodwell, T. J.
    Ketelsen, C.
    Scheichl, R.
    Teckentru, A. L.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (04): : 1398 - 1399
  • [30] hp-MULTILEVEL MONTE CARLO METHODS FOR UNCERTAINTY QUANTIFICATION OF COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Beck, Andrea
    Duerrwaechter, Jakob
    Kuhn, Thomas
    Meyer, Fabian
    Munz, Claus-Dieter
    Rohde, Christian
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04): : B1067 - B1091