Multilevel Monte Carlo FDTD Method for Uncertainty Quantification

被引:0
|
作者
Zhu, Xiaojie [1 ,2 ]
Di Rienzo, Luca [2 ]
Ma, Xikui [1 ]
Codecasa, Lorenzo [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Sch Elect Engn, Xian 710049, Peoples R China
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
基金
国家重点研发计划;
关键词
Finite difference methods; Time-domain analysis; Monte Carlo methods; Standards; Uncertainty; Random variables; Electric fields; Finite-difference time-domain method; multilevel Monte Carlo method (MLMC); uncertainty quantification; STOCHASTIC FDTD; ROUGH-SURFACE; SCATTERING;
D O I
10.1109/LAWP.2022.3189414
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The recent multilevel Monte Carlo method is here proposed for uncertainty quantification in electromagnetic problems solved by the finite-difference time-domain (FDTD) method, when material parameters are modeled as random variables. It improves the estimations of the mean and variance of the quantities of interest computed on a FDTD spatial grid by sampling at coarser levels of discretization. The proposed approach can amply reduce the computational cost of the standard Monte Carlo FDTD, at the price of a small reduction of its accuracy. It is advantageous with respect to polynomial chaos FDTD, when the latter fails or becomes prohibitive for computational requirements. It also appears to widely outperform stochastic FDTD in terms of accuracy.
引用
收藏
页码:2030 / 2034
页数:5
相关论文
共 50 条
  • [21] ANALYSIS OF UNCERTAINTY QUANTIFICATION METHOD BY COMPARING MONTE-CARLO METHOD AND WILKS' FORMULA
    Lee, Seung Wook
    Chung, Bub Dong
    Bang, Young-Seok
    Bae, Sung Won
    [J]. NUCLEAR ENGINEERING AND TECHNOLOGY, 2014, 46 (04) : 481 - 488
  • [22] hp-MULTILEVEL MONTE CARLO METHODS FOR UNCERTAINTY QUANTIFICATION OF COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Beck, Andrea
    Duerrwaechter, Jakob
    Kuhn, Thomas
    Meyer, Fabian
    Munz, Claus-Dieter
    Rohde, Christian
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04): : B1067 - B1091
  • [23] Uncertainty Quantification for the BGK Model of the Boltzmann Equation Using Multilevel Variance Reduced Monte Carlo Methods
    Hu, Jingwei
    Pareschi, Lorenzo
    Wang, Yubo
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 650 - 680
  • [24] Uncertainty Evaluation by Monte Carlo Method
    P. Rachakonda
    V. Ramnath
    V. S. Pandey
    [J]. MAPAN, 2019, 34 : 295 - 298
  • [25] Uncertainty Evaluation by Monte Carlo Method
    Rachakonda, P.
    Ramnath, V.
    Pandey, V. S.
    [J]. MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA, 2019, 34 (03): : 295 - 298
  • [26] Multicanonical sequential Monte Carlo sampler for uncertainty quantification
    Millar, Robert
    Li, Hui
    Li, Jinglai
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 237
  • [27] An exact framework for uncertainty quantification in Monte Carlo simulation
    Saracco, P.
    Pia, M. G.
    [J]. 20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513
  • [28] Progress with Uncertainty Quantification in Generic Monte Carlo Simulations
    Saracco, P.
    Pia, M. G.
    [J]. 2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [29] Multilevel quasi-Monte Carlo for optimization under uncertainty
    Philipp A. Guth
    Andreas Van Barel
    [J]. Numerische Mathematik, 2023, 154 : 443 - 484
  • [30] Multilevel quasi-Monte Carlo for optimization under uncertainty
    Guth, Philipp A.
    Van Barel, Andreas
    [J]. NUMERISCHE MATHEMATIK, 2023, 154 (3-4) : 443 - 484