Multilevel quasi-Monte Carlo for optimization under uncertainty

被引:2
|
作者
Guth, Philipp A. [1 ]
Van Barel, Andreas [2 ]
机构
[1] Johann Radon Inst Computat & Appl Math, OAW, Altenbergerstr 69, A-4040 Linz, Austria
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium
关键词
65D30; 65D32; 35Q93; 65C05; 49M41; 35R60; ELLIPTIC PDES; RANDOM-COEFFICIENTS; ALGORITHM;
D O I
10.1007/s00211-023-01364-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of optimizing the average tracking error for an elliptic partial differential equation with an uncertain lognormal diffusion coefficient. In particular, the application of the multilevel quasi-Monte Carlo (MLQMC) method to the estimation of the gradient is investigated, with a circulant embedding method used to sample the stochastic field. A novel regularity analysis of the adjoint variable is essential for the MLQMC estimation of the gradient in combination with the samples generated using the circulant embedding method. A rigorous cost and error analysis shows that a randomly shifted quasi-Monte Carlo method leads to a faster rate of decay in the root mean square error of the gradient than the ordinary Monte Carlo method, while considering multiple levels substantially reduces the computational effort. Numerical experiments confirm the improved rate of convergence and show that the MLQMC method outperforms the multilevel Monte Carlo method and single level quasi-Monte Carlo method.
引用
收藏
页码:443 / 484
页数:42
相关论文
共 50 条
  • [1] Multilevel quasi-Monte Carlo for optimization under uncertainty
    Philipp A. Guth
    Andreas Van Barel
    Numerische Mathematik, 2023, 154 : 443 - 484
  • [2] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [3] A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty
    Guth, Philipp A.
    Kaarnioja, Vesa
    Kuo, Frances Y.
    Schillings, Claudia
    Sloan, Ian H.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 354 - 383
  • [4] MULTILEVEL QUASI-MONTE CARLO FOR INTERVAL ANALYSIS
    Callens, Robin R. P.
    Faes, Matthias G. R.
    Moens, David
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (04) : 1 - 19
  • [5] Multilevel Quasi-Monte Carlo Uncertainty Quantification for Advection-Diffusion-Reaction
    Herrmann, Lukas
    Schwab, Christoph
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 31 - 67
  • [6] Quasi-Monte Carlo strategies for stochastic optimization
    Drew, Shane S.
    Homem-de-Mello, Tito
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 774 - +
  • [7] Quasi-Monte Carlo simulation methods for measurement uncertainty
    Li, LM
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 356 - 367
  • [8] Decision-theoretic sensitivity analysis for reservoir development under uncertainty using multilevel quasi-Monte Carlo methods
    Goda, Takashi
    Murakami, Daisuke
    Tanaka, Kei
    Sato, Kozo
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (04) : 1009 - 1020
  • [9] MULTILEVEL QUASI-MONTE CARLO METHODS FOR LOGNORMAL DIFFUSION PROBLEMS
    Kuo, Frances Y.
    Scheichl, Robert
    Schwab, Christoph
    Sloan, Ian H.
    Ullmann, Elisabeth
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2827 - 2860
  • [10] Decision-theoretic sensitivity analysis for reservoir development under uncertainty using multilevel quasi-Monte Carlo methods
    Takashi Goda
    Daisuke Murakami
    Kei Tanaka
    Kozo Sato
    Computational Geosciences, 2018, 22 : 1009 - 1020