FRACTIONAL FOCK-SOBOLEV SPACES

被引:5
|
作者
Cho, Hong Rae [1 ]
Park, Soohyun [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
WEIGHTED COMPOSITION OPERATORS; TOEPLITZ-OPERATORS;
D O I
10.1017/nmj.2018.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s 2 R and 0 < p 61. The fractional Fock{Sobolev spaces F s;p R are introduced through the fractional radial derivatives R s=2. We describe explicitly the reproducing kernels for the fractional Fock{Sobolev spaces F s;2 R and then get the pointwise size estimate of the reproducing kernels. By using the estimate, we prove that the fractional Fock{Sobolev spaces F s;p R are identified with the weighted Fock spaces F p s that do not involve derivatives. So, the study on the Fock{Sobolev spaces is reduced to that on the weighted Fock spaces.
引用
收藏
页码:79 / 97
页数:19
相关论文
共 50 条
  • [1] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [2] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2015, 43 : 199 - 240
  • [3] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [4] Fock-Sobolev spaces and their Carleson measures
    Cho, Hong Rae
    Zhu, Kehe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2483 - 2506
  • [5] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [6] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [7] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    [J]. Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [8] Gleason's problem on Fock-Sobolev spaces
    Dai, Jineng
    Zhou, Jingyun
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 337 - 348
  • [9] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [10] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32