Fock-Sobolev Spaces of Fractional Order

被引:26
|
作者
Cho, Hong Rae [1 ]
Choe, Boo Rim [2 ]
Koo, Hyungwoon [2 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Korea Univ, Dept Math, Seoul 136713, South Korea
关键词
Fock-Sobolev space of fractional order; Weighted Fock space; Carleson measure; Banach dual; Complex interpolation; RIESZ; TRANSFORMATION; OPERATORS;
D O I
10.1007/s11118-015-9468-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the full range of index , real weight alpha and real Sobolev order s, two types of weighted Fock-Sobolev spaces over , and , are introduced through fractional differentiation and through fractional integration, respectively. We show that they are the same with equivalent norms and, furthermore, that they are identified with the weighted Fock space for the full range of parameters. So, the study on the weighted Fock-Sobolev spaces is reduced to that on the weighted Fock spaces. We describe explicitly the reproducing kernels for the weighted Fock spaces and then establish the boundedness of integral operators induced by the reproducing kernels. We also identify dual spaces, obtain complex interpolation result and characterize Carleson measures.
引用
收藏
页码:199 / 240
页数:42
相关论文
共 50 条
  • [1] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2015, 43 : 199 - 240
  • [2] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [3] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [4] Fock-Sobolev spaces and their Carleson measures
    Cho, Hong Rae
    Zhu, Kehe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2483 - 2506
  • [5] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [6] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [7] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    [J]. Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [8] Gleason's problem on Fock-Sobolev spaces
    Dai, Jineng
    Zhou, Jingyun
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 337 - 348
  • [9] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [10] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32