Fock-Sobolev spaces and their Carleson measures

被引:81
|
作者
Cho, Hong Rae [2 ]
Zhu, Kehe [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[2] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
Fock space; Fock-Sobolev space; Carleson measure; Gaussian measure; Reproducing kernel; TOEPLITZ-OPERATORS; ANALYTIC FUNCTIONS; TRANSFORM;
D O I
10.1016/j.jfa.2012.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of holomorphic spaces F-p,F-m consisting of entire functions on C-n such that partial derivative(alpha) f is in the Fock space F-p for all multi-indices a with vertical bar alpha vertical bar <= m. We prove a useful Fourier characterization, namely, f is an element of F-p,F-m if and only if z(alpha) f(z) is in F-p for all alpha with vertical bar alpha vertical bar = m. We obtain duality and interpolation results for these spaces, including the interesting fact that. for 0 < p <= 1, (F-p,F-m)* = F-infinity,F-m. We also characterize Carleson measures for F-p,F-m in terms of simple polynomial growth conditions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2483 / 2506
页数:24
相关论文
共 50 条
  • [1] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [2] Carleson Type Measures for Fock–Sobolev Spaces
    Tesfa Mengestie
    [J]. Complex Analysis and Operator Theory, 2014, 8 : 1225 - 1256
  • [3] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [4] Fock-Sobolev空间上的Carleson测度
    胡晴华
    [J]. 嘉兴学院学报, 2012, 24 (03) : 20 - 27
  • [5] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [6] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [7] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [8] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2015, 43 : 199 - 240
  • [9] Fock-Sobolev空间上的拟Carleson测度
    邬碧倩
    曹广福
    [J]. 中国科学:数学, 2023, 53 (12) : 1827 - 1836
  • [10] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    [J]. Acta Mathematica Scientia, 2021, 41 : 337 - 348