Carleson Type Measures for Fock-Sobolev Spaces

被引:30
|
作者
Mengestie, Tesfa [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Fock-Sobolev spaces; Fock-Carleson measures; Berezin type transforms; Averaging sequences; Averaging functions; Weighted composition operator; Bounded; Compact; Essential norm; WEIGHTED COMPOSITION OPERATORS; ANALYTIC-FUNCTIONS; BERGMAN SPACES;
D O I
10.1007/s11785-013-0321-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the Fock-Carleson measures for weighted Fock-Sobolev spaces in terms of the objects -Berezin transforms, averaging functions, and averaging sequences on the complex space . The main results show that while these objects may have growth not faster than polynomials to induce the measures for , they should be of integrable against a weight of polynomial growth for . As an application, we characterize the bounded and compact weighted composition operators on the Fock-Sobolev spaces in terms of certain Berezin type integral transforms on . We also obtained estimation results for the norms and essential norms of the operators in terms of the integral transforms. The results obtained unify and extend a number of other results in the area.
引用
收藏
页码:1225 / 1256
页数:32
相关论文
共 50 条
  • [1] Fock-Sobolev spaces and their Carleson measures
    Cho, Hong Rae
    Zhu, Kehe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2483 - 2506
  • [2] Carleson Type Measures for Fock–Sobolev Spaces
    Tesfa Mengestie
    [J]. Complex Analysis and Operator Theory, 2014, 8 : 1225 - 1256
  • [3] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [4] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [5] Fock-Sobolev空间上的Carleson测度
    胡晴华
    [J]. 嘉兴学院学报, 2012, 24 (03) : 20 - 27
  • [6] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [7] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [8] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [9] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2015, 43 : 199 - 240
  • [10] Sub-Hilbert relation for Fock-Sobolev type spaces
    Eskandari, Setareh
    Abkar, Ali
    Ahag, Per
    Perala, Antti
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 958 - 969