Gleason's problem on Fock-Sobolev spaces

被引:1
|
作者
Dai, Jineng [1 ]
Zhou, Jingyun [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Math, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Fock-Sobolev space; Gleason’ s problem; EQUIVALENT NORMS;
D O I
10.1007/s10473-021-0120-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we solve completely Gleason's problem on Fock-Sobolev spaces F-p,F-m for any non-negative integer m and 0 < p <= infinity.
引用
收藏
页码:337 / 348
页数:12
相关论文
共 50 条
  • [1] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    [J]. Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [2] GLEASON'S PROBLEM ON FOCK-SOBOLEV SPACES
    戴济能
    周静云
    [J]. Acta Mathematica Scientia, 2021, 41 (01) : 337 - 348
  • [3] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [4] Fock-Sobolev spaces and their Carleson measures
    Cho, Hong Rae
    Zhu, Kehe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2483 - 2506
  • [5] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [6] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [7] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [8] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2015, 43 : 199 - 240
  • [9] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [10] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32