FRACTIONAL FOCK-SOBOLEV SPACES

被引:6
|
作者
Cho, Hong Rae [1 ]
Park, Soohyun [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
WEIGHTED COMPOSITION OPERATORS; TOEPLITZ-OPERATORS;
D O I
10.1017/nmj.2018.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s 2 R and 0 < p 61. The fractional Fock{Sobolev spaces F s;p R are introduced through the fractional radial derivatives R s=2. We describe explicitly the reproducing kernels for the fractional Fock{Sobolev spaces F s;2 R and then get the pointwise size estimate of the reproducing kernels. By using the estimate, we prove that the fractional Fock{Sobolev spaces F s;p R are identified with the weighted Fock spaces F p s that do not involve derivatives. So, the study on the Fock{Sobolev spaces is reduced to that on the weighted Fock spaces.
引用
收藏
页码:79 / 97
页数:19
相关论文
共 50 条
  • [21] Bounded and Compact Hankel Operators on the Fock-Sobolev Spaces
    Gupta, Anuradha
    Gupta, Bhawna
    FILOMAT, 2022, 36 (14) : 4767 - 4778
  • [22] Integral Operators on Fock-Sobolev Spaces via Multipliers on Gauss-Sobolev Spaces
    Wick, Brett D.
    Wu, Shengkun
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (02)
  • [23] Commuting Toeplitz Operators on Fock-Sobolev Spaces of Negative Orders
    Cho, Hong Rae
    Lee, Han-Wool
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (10) : 1989 - 2005
  • [24] HANKEL BILINEAR FORMS ON GENERALIZED FOCK-SOBOLEV SPACES ON Cn
    Cascante, Carme
    Fabrega, Joan
    Pascuas, Daniel
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 841 - 862
  • [25] Sub-Hilbert relation for Fock-Sobolev type spaces
    Eskandari, Setareh
    Abkar, Ali
    Ahag, Per
    Perala, Antti
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 958 - 969
  • [26] Semi-commuting Toeplitz operators on Fock-Sobolev spaces
    Qin, Jie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [27] Commuting Toeplitz Operators on Fock-Sobolev Spaces of Negative Orders
    Hong Rae CHO
    Han-Wool LEE
    Acta Mathematica Sinica,English Series, 2023, (10) : 1989 - 2005
  • [28] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    Wang XiaoFeng
    Cao GuangFu
    Xia Jin
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1443 - 1462
  • [29] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    WANG XiaoFeng
    CAO GuangFu
    XIA Jin
    ScienceChina(Mathematics), 2014, 57 (07) : 1443 - 1462
  • [30] Mixed Product of Hankel and Toeplitz Operators on Fock-Sobolev Spaces
    Qin, Jie
    Wang, Xiao Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1245 - 1255