Commuting Toeplitz Operators on Fock-Sobolev Spaces of Negative Orders

被引:1
|
作者
Cho, Hong Rae [1 ]
Lee, Han-Wool [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
关键词
Fock-Sobolev spaces; commutator of Toeplitz operators; Mellin Transform; Confluent Hypergeometric Function; SYMBOLS; QUANTIZATION; COMMUTANTS;
D O I
10.1007/s10114-023-1541-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the setting of Fock-Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock-Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.
引用
收藏
页码:1989 / 2005
页数:17
相关论文
共 50 条
  • [1] Commuting Toeplitz Operators on Fock-Sobolev Spaces of Negative Orders
    Hong Rae CHO
    Han-Wool LEE
    [J]. Acta Mathematica Sinica,English Series, 2023, (10) : 1989 - 2005
  • [2] Commuting Toeplitz Operators on Fock–Sobolev Spaces of Negative Orders
    Hong Rae Cho
    Han-Wool Lee
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 1989 - 2005
  • [3] Semi-commuting Toeplitz operators on Fock-Sobolev spaces
    Qin, Jie
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [4] Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders
    Xu, Chunxu
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (01) : 123 - 138
  • [5] Commuting Toeplitz operators on the Fock-Sobolev space
    Fan, Junmei
    Liu, Liu
    Lu, Yufeng
    [J]. ADVANCES IN OPERATOR THEORY, 2022, 7 (03)
  • [6] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [7] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [8] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    [J]. Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [9] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    [J]. Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [10] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    Wang XiaoFeng
    Cao GuangFu
    Xia Jin
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1443 - 1462