Commuting Toeplitz Operators on Fock-Sobolev Spaces of Negative Orders

被引:1
|
作者
Cho, Hong Rae [1 ]
Lee, Han-Wool [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
关键词
Fock-Sobolev spaces; commutator of Toeplitz operators; Mellin Transform; Confluent Hypergeometric Function; SYMBOLS; QUANTIZATION; COMMUTANTS;
D O I
10.1007/s10114-023-1541-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the setting of Fock-Sobolev spaces of positive orders over the complex plane, Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial, then the other must also be radial. In this paper, we extend this result to the Fock-Sobolev space of negative order using the Fock-type space with a confluent hypergeometric function.
引用
收藏
页码:1989 / 2005
页数:17
相关论文
共 50 条
  • [31] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [32] Fock-Sobolev Spaces and Weighted Composition Operators among Them
    HE LI
    CAO GUANG-FU
    Ji You-qing
    [J]. Communications in Mathematical Research, 2016, 32 (04) : 303 - 318
  • [33] Hankel Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [34] Fock-Sobolev spaces and their Carleson measures
    Cho, Hong Rae
    Zhu, Kehe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2483 - 2506
  • [35] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [36] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    [J]. POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [37] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [38] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2015, 43 : 199 - 240
  • [39] On the Spectrum of Volterra-Type Integral Operators on Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1451 - 1461
  • [40] Mixed Product of Hankel and Toeplitz Operators on Fock–Sobolev Spaces
    Jie QIN
    Xiao Feng WANG
    [J]. Acta Mathematica Sinica, 2020, 36 (11) : 1245 - 1255