Hankel Operators Between Different Fock-Sobolev Type Spaces

被引:0
|
作者
Chen, Jianjun [1 ,2 ,3 ]
Wang, Xiaofeng [2 ,3 ]
Xia, Jin [2 ,3 ]
Xu, Guangxia [1 ,2 ,3 ]
机构
[1] Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Hankel operators; Fock-Sobolev type spaces; IMO spaces;
D O I
10.1007/s11785-024-01487-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Hankel operators on the Fock-Sobolev type spaces for all possible 1 <= p,q<infinity and alpha is an element of R. We introduce a function space called integrable mean oscillation on C-n. Then we characterize those symbols f for which the Hankel operators H-f(alpha) and H-f(-alpha) are simultaneously bounded (or compact) from Fock-Sobolev type space F-alpha(p) to Lebesgue space F-alpha(p).
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    [J]. Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [2] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    [J]. Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [3] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [4] Bounded and Compact Hankel Operators on the Fock-Sobolev Spaces
    Gupta, Anuradha
    Gupta, Bhawna
    [J]. FILOMAT, 2022, 36 (14) : 4767 - 4778
  • [5] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)
  • [6] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Jianjun Chen
    Xiaofeng Wang
    Jin Xia
    Guangxia Xu
    [J]. Complex Analysis and Operator Theory, 2022, 16
  • [7] Mixed Product of Hankel and Toeplitz Operators on Fock-Sobolev Spaces
    Qin, Jie
    Wang, Xiao Feng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1245 - 1255
  • [8] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [9] Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders
    Xu, Chunxu
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (01) : 123 - 138
  • [10] Hankel Operators Between Different Fock–Sobolev Type SpacesDaniel Alpay
    Jianjun Chen
    Xiaofeng Wang
    Jin Xia
    Guangxia Xu
    [J]. Complex Analysis and Operator Theory, 2024, 18