Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces

被引:3
|
作者
Chen, Jianjun [1 ]
Wang, Xiaofeng [2 ,3 ]
Xia, Jin [2 ,3 ]
Xu, Guangxia [1 ,2 ,3 ]
机构
[1] Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] Guangzhou Univ, Key Lab Math & Interdisciplinary Sci, Guangdong Higher Educ Inst, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Toeplitz Operators; Fock-Sobolev type spaces; Positive measure; t-Berezin transform;
D O I
10.1007/s11785-022-01200-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the boundedness and compactness of Toeplitz operator T-mu(alpha) with positive measure symbol mu from one Fock-Sobolve type spaces F-alpha(p) to another F-alpha(q) with 0 < p, q < infinity by the averaging function (mu) over cap (r) and the t-Berezin transform (mu) over tilde (alpha)(t).
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Jianjun Chen
    Xiaofeng Wang
    Jin Xia
    Guangxia Xu
    [J]. Complex Analysis and Operator Theory, 2022, 16
  • [2] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [3] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    Wang XiaoFeng
    Cao GuangFu
    Xia Jin
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1443 - 1462
  • [4] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    WANG XiaoFeng
    CAO GuangFu
    XIA Jin
    [J]. Science China Mathematics, 2014, 57 (07) : 1443 - 1462
  • [5] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    XiaoFeng Wang
    GuangFu Cao
    Jin Xia
    [J]. Science China Mathematics, 2014, 57 : 1443 - 1462
  • [6] Hankel Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [7] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    [J]. Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [8] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [9] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    [J]. Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [10] Sarason's Conjecture of Toeplitz Operators on Fock-Sobolev Type Spaces
    Wang, Xiaofeng
    Chen, Jianjun
    Xia, Jin
    [J]. JOURNAL OF FUNCTION SPACES, 2018, 2018