Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces

被引:0
|
作者
Jianjun Chen
Xiaofeng Wang
Jin Xia
Guangxia Xu
机构
[1] Zhaoqing University,School of Mathematics and Statistics
[2] Guangzhou University,School of Mathematics and Information Science and Key Laboratory of Mathematics and Interdisciplinary Sciences of the Guangdong Higher Education Institute
来源
关键词
Toeplitz Operators; Fock-Sobolev type spaces; Positive measure; t-Berezin transform; Primary 47B38; Secondary 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the boundedness and compactness of Toeplitz operator Tμα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^\alpha _\mu $$\end{document} with positive measure symbol μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} from one Fock-Sobolve type spaces Fαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^p_\alpha $$\end{document} to another Fαq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^q_\alpha $$\end{document} with 0<p,q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p,q<\infty $$\end{document} by the averaging function μ^r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\widehat{\mu }}}_r$$\end{document} and the t-Berezin transform μ~tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\widetilde{\mu }}}^\alpha _t$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)
  • [2] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [3] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    Wang XiaoFeng
    Cao GuangFu
    Xia Jin
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1443 - 1462
  • [4] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    WANG XiaoFeng
    CAO GuangFu
    XIA Jin
    [J]. Science China Mathematics, 2014, 57 (07) : 1443 - 1462
  • [5] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    XiaoFeng Wang
    GuangFu Cao
    Jin Xia
    [J]. Science China Mathematics, 2014, 57 : 1443 - 1462
  • [6] Hankel Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [7] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [8] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    [J]. Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [9] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    [J]. Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [10] Sarason's Conjecture of Toeplitz Operators on Fock-Sobolev Type Spaces
    Wang, Xiaofeng
    Chen, Jianjun
    Xia, Jin
    [J]. JOURNAL OF FUNCTION SPACES, 2018, 2018