Bounded and Compact Hankel Operators on the Fock-Sobolev Spaces

被引:0
|
作者
Gupta, Anuradha [1 ]
Gupta, Bhawna [2 ]
机构
[1] Univ Delhi, Delhi Coll Arts & Commerce, Dept Math, Delhi, India
[2] Univ Delhi, Dept Math, Delhi, India
关键词
Fock-Sobolev spaces; Hankel operators; Berezin transform; BMOpr spaces; VMOpr spaces; TOEPLITZ-OPERATORS;
D O I
10.2298/FIL2214767G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the operator-theoretic properties (boundedness and compactness) of Hankel operators on the Fock-Sobolev spaces . p,m in terms of symbols in BMOpr and VMOpr spaces, respectively, for a non-negative integers m, 1 <= p < infinity and r > 0. Along the way, we also study Berezin transform of Hankel operators on . p,m.
引用
收藏
页码:4767 / 4778
页数:12
相关论文
共 50 条
  • [1] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [2] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    [J]. Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [3] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    [J]. Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [4] Mixed Product of Hankel and Toeplitz Operators on Fock-Sobolev Spaces
    Qin, Jie
    Wang, Xiao Feng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1245 - 1255
  • [5] Hankel Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [6] Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders
    Xu, Chunxu
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (01) : 123 - 138
  • [7] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [8] HANKEL BILINEAR FORMS ON GENERALIZED FOCK-SOBOLEV SPACES ON Cn
    Cascante, Carme
    Fabrega, Joan
    Pascuas, Daniel
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 841 - 862
  • [9] Linear Combinations of Composition Operators on the Fock-Sobolev Spaces
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2014, 41 : 1223 - 1246
  • [10] Linear Combinations of Composition Operators on the Fock-Sobolev Spaces
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    [J]. POTENTIAL ANALYSIS, 2014, 41 (04) : 1223 - 1246