HANKEL BILINEAR FORMS ON GENERALIZED FOCK-SOBOLEV SPACES ON Cn

被引:3
|
作者
Cascante, Carme [1 ]
Fabrega, Joan [1 ]
Pascuas, Daniel [1 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08071, Spain
关键词
Bilinear forms; Fock-Sobolev spaces; small Hankel operator; Schatten class operator; Bergman kernel; TOEPLITZ-OPERATORS; BERGMAN-KERNEL;
D O I
10.5186/aasfm.2020.4546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock-Sobolev spaces on C-n with respect to the weight (1 + vertical bar z vertical bar)(rho) is an element of- alpha/2 vertical bar z vertical bar(2l), for l >= 1, alpha > 0 and rho is an element of R. We obtain a weak decomposition of the Bergman kernel with estimates and a Littlewood-Paley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces.
引用
收藏
页码:841 / 862
页数:22
相关论文
共 50 条
  • [1] Boundedness of the Bergman Projection on Generalized Fock-Sobolev Spaces on Cn
    Cascante, Carme
    Fabrega, Joan
    Pascuas, Daniel
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (02)
  • [2] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    [J]. Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [3] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [4] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    [J]. Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [5] Bounded and Compact Hankel Operators on the Fock-Sobolev Spaces
    Gupta, Anuradha
    Gupta, Bhawna
    [J]. FILOMAT, 2022, 36 (14) : 4767 - 4778
  • [6] Sub-Hilbert spaces in Fock-Sobolev spaces on Cn
    Abkar, Ali
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [7] Mixed Product of Hankel and Toeplitz Operators on Fock-Sobolev Spaces
    Qin, Jie
    Wang, Xiao Feng
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1245 - 1255
  • [8] Hankel Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [9] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [10] Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders
    Xu, Chunxu
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (01) : 123 - 138