Bounded and Compact Hankel Operators on the Fock-Sobolev Spaces

被引:0
|
作者
Gupta, Anuradha [1 ]
Gupta, Bhawna [2 ]
机构
[1] Univ Delhi, Delhi Coll Arts & Commerce, Dept Math, Delhi, India
[2] Univ Delhi, Dept Math, Delhi, India
关键词
Fock-Sobolev spaces; Hankel operators; Berezin transform; BMOpr spaces; VMOpr spaces; TOEPLITZ-OPERATORS;
D O I
10.2298/FIL2214767G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the operator-theoretic properties (boundedness and compactness) of Hankel operators on the Fock-Sobolev spaces . p,m in terms of symbols in BMOpr and VMOpr spaces, respectively, for a non-negative integers m, 1 <= p < infinity and r > 0. Along the way, we also study Berezin transform of Hankel operators on . p,m.
引用
收藏
页码:4767 / 4778
页数:12
相关论文
共 50 条
  • [31] Mixed Product of Hankel and Toeplitz Operators on Fock–Sobolev Spaces
    Jie QIN
    Xiao Feng WANG
    [J]. Acta Mathematica Sinica,English Series, 2020, (11) : 1245 - 1255
  • [32] On the Spectrum of Volterra-Type Integral Operators on Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1451 - 1461
  • [33] Sarason's Conjecture of Toeplitz Operators on Fock-Sobolev Type Spaces
    Wang, Xiaofeng
    Chen, Jianjun
    Xia, Jin
    [J]. JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [34] SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES
    Mengestie, Tesfa
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (06) : 1801 - 1816
  • [35] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    [J]. Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [36] Gleason's problem on Fock-Sobolev spaces
    Dai, Jineng
    Zhou, Jingyun
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 337 - 348
  • [37] Commuting Toeplitz operators on the Fock-Sobolev space
    Fan, Junmei
    Liu, Liu
    Lu, Yufeng
    [J]. ADVANCES IN OPERATOR THEORY, 2022, 7 (03)
  • [38] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [39] GLEASON'S PROBLEM ON FOCK-SOBOLEV SPACES
    戴济能
    周静云
    [J]. Acta Mathematica Scientia, 2021, 41 (01) : 337 - 348
  • [40] Sub-Hilbert spaces in Fock-Sobolev spaces on Cn
    Abkar, Ali
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)