reciprocalspaceship: a Python']Python library for crystallographic data analysis

被引:15
|
作者
Greisman, Jack B. [1 ]
Dalton, Kevin M. [1 ]
Hekstra, Doeke R. [1 ,2 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, 52 Oxford St, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
X-ray crystallography; data analysis; !text type='Python']Python[!/text; PHOTOACTIVE YELLOW PROTEIN; INTEGRATION;
D O I
10.1107/S160057672100755X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Crystallography uses the diffraction of X-rays, electrons or neutrons by crystals to provide invaluable data on the atomic structure of matter, from single atoms to ribosomes. Much of crystallography's success is due to the software packages developed to enable automated processing of diffraction data. However, the analysis of unconventional diffraction experiments can still pose significant challenges - many existing programs are closed source, sparsely documented, or challenging to integrate with modern libraries for scientific computing and machine learning. Described here is reciprocalspaceship, a Python library for exploring reciprocal space. It provides a tabular representation for reflection data from diffraction experiments that extends the widely used pandas library with built-in methods for handling space groups, unit cells and symmetry-based operations. As is illustrated, this library facilitates new modes of exploratory data analysis while supporting the prototyping, development and release of new methods.
引用
收藏
页码:1521 / 1529
页数:9
相关论文
共 50 条
  • [41] Razorback, an Open Source Python']Python Library for Robust Processing of Magnetotelluric Data
    Smai, Farid
    Wawrzyniak, Pierre
    FRONTIERS IN EARTH SCIENCE, 2020, 8
  • [42] PyHMMER: a Python']Python library binding to HMMER for efficient sequence analysis
    Larralde, Martin
    Zeller, Georg
    BIOINFORMATICS, 2023, 39 (05)
  • [43] ocpa: A Python']Python library for object-centric process analysis
    Adams, Jan Niklas
    Park, Gyunam
    van der Aalst, Wil M. P.
    SOFTWARE IMPACTS, 2022, 14
  • [44] A Python']Python library for exploratory data analysis on twitter data based on tokens and aggregated origin-destination information
    Graff, Mario
    Moctezuma, Daniela
    Miranda-Jimenez, Sabino
    Tellez, Eric S.
    COMPUTERS & GEOSCIENCES, 2022, 159
  • [45] High-performance Python']Python for crystallographic computing
    Boulle, A.
    Kieffer, J.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2019, 52 : 882 - 897
  • [46] Testing Linear Regressions by StatsModel Library of Python']Python for Oceanological Data Interpretation
    Lemenkova, Polina
    AQUATIC SCIENCES AND ENGINEERING, 2019, 34 (02): : 51 - 60
  • [47] pyjeo: A Python']Python Package for the Analysis of Geospatial Data
    Kempeneers, Pieter
    Pesek, Ondrej
    De Marchi, Davide
    Soille, Pierre
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (10)
  • [48] Graphical analysis of educational data using Python']Python
    Swacha, Jakub
    E-MENTOR, 2016, (02): : 13 - 21
  • [49] Crates and Transform: Python']Python Interfaces for Data Analysis
    Lyn, Janine
    Cresitello-Dittmar, Mark
    Evans, Ian
    Evans, Janet DePonte
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXIII, 2014, 485 : 339 - 342
  • [50] PYSAT: Python']Python Satellite Data Analysis Toolkit
    Stoneback, R. A.
    Burrell, A. G.
    Klenzing, J.
    Depew, M. D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (06) : 5271 - 5283