PyHMMER: a Python']Python library binding to HMMER for efficient sequence analysis

被引:12
|
作者
Larralde, Martin [1 ]
Zeller, Georg [1 ]
机构
[1] EMBL, Struct & Computat Biol Unit, Meyerhofstr 1, D-69117 Heidelberg, Germany
关键词
D O I
10.1093/bioinformatics/btad214
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
PyHMMER provides Python integration of the popular profile Hidden Markov Model software HMMER via Cython bindings. This allows the annotation of protein sequences with profile HMMs and building new ones directly with Python. PyHMMER increases flexibility of use, allowing creating queries directly from Python code, launching searches, and obtaining results without I/O, or accessing previously unavailable statistics like uncorrected P-values. A new parallelization model greatly improves performance when running multithreaded searches, while producing the exact same results as HMMER.Availability and implementationPyHMMER supports all modern Python versions (Python 3.6+) and similar platforms as HMMER (x86 or PowerPC UNIX systems). Pre-compiled packages are released via PyPI () and Bioconda (). The PyHMMER source code is available under the terms of the open-source MIT licence and hosted on GitHub (); its documentation is available on ReadTheDocs ().
引用
收藏
页数:3
相关论文
共 50 条
  • [1] PxBLAT: an efficient python']python binding library for BLAT
    Li, Yangyang
    Yang, Rendong
    [J]. BMC BIOINFORMATICS, 2024, 25 (01):
  • [2] A Python']Python Library for Trace Analysis
    Dams, Dennis
    Havelund, Klaus
    Kauffman, Sean
    [J]. RUNTIME VERIFICATION (RV 2022), 2022, 13498 : 264 - 273
  • [3] An Efficient and Extendable Python']Python Library to Analyze Neuronal Morphologies
    Torben-Nielsen, Benjamin
    [J]. NEUROINFORMATICS, 2014, 12 (04) : 619 - 622
  • [4] IDALib: a Python']Python library for efficient image data augmentation
    Vila-Blanco, Nicolas
    Vilas, Raquel R.
    Carreira, Maria J.
    [J]. 2022 10TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2022,
  • [5] Introduction to numba library in Python']Python for efficient statistical computing
    Cho, Younsang
    Yu, Donghyeon
    Son, Won
    Park, Seoncheol
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2020, 33 (06) : 665 - 682
  • [6] AsaPy: A Python']Python Library for Aerospace Simulation Analysis
    Dantas, Joao P. A.
    Silva, Samara R.
    Gomes, Vitor C. F.
    Costa, Andre N.
    Samersla, Adrisson R.
    Geraldo, Diego
    Maximo, Marcos R. O. A.
    Yoneyama, Takashi
    [J]. PROCEEDINGS OF THE 38TH ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACM SIGSIM-PADS 2024, 2024, : 15 - 24
  • [7] Melodia: a Python']Python library for protein structure analysis
    Montalvao, Rinaldo W.
    Pitt, William R.
    Pinheiro, Vitor B.
    Blundell, Tom L.
    [J]. BIOINFORMATICS, 2024, 40 (07)
  • [8] reciprocalspaceship: a Python']Python library for crystallographic data analysis
    Greisman, Jack B.
    Dalton, Kevin M.
    Hekstra, Doeke R.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1521 - 1529
  • [9] ChemTS: an efficient python']python library for de novo molecular generation
    Yang, Xiufeng
    Zhang, Jinzhe
    Yoshizoe, Kazuki
    Terayama, Kei
    Tsuda, Koji
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2017, 18 (01) : 972 - 976
  • [10] The Python']Python Control Systems Library (python']python-control)
    Fuller, Sawyer
    Greiner, Ben
    Moore, Jason
    Murray, Richard
    van Paassen, Rene
    Yorke, Rory
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4875 - 4881