reciprocalspaceship: a Python']Python library for crystallographic data analysis

被引:15
|
作者
Greisman, Jack B. [1 ]
Dalton, Kevin M. [1 ]
Hekstra, Doeke R. [1 ,2 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, 52 Oxford St, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
X-ray crystallography; data analysis; !text type='Python']Python[!/text; PHOTOACTIVE YELLOW PROTEIN; INTEGRATION;
D O I
10.1107/S160057672100755X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Crystallography uses the diffraction of X-rays, electrons or neutrons by crystals to provide invaluable data on the atomic structure of matter, from single atoms to ribosomes. Much of crystallography's success is due to the software packages developed to enable automated processing of diffraction data. However, the analysis of unconventional diffraction experiments can still pose significant challenges - many existing programs are closed source, sparsely documented, or challenging to integrate with modern libraries for scientific computing and machine learning. Described here is reciprocalspaceship, a Python library for exploring reciprocal space. It provides a tabular representation for reflection data from diffraction experiments that extends the widely used pandas library with built-in methods for handling space groups, unit cells and symmetry-based operations. As is illustrated, this library facilitates new modes of exploratory data analysis while supporting the prototyping, development and release of new methods.
引用
收藏
页码:1521 / 1529
页数:9
相关论文
共 50 条
  • [1] MetPy: A Meteorological Python']Python Library for Data Analysis and Visualization
    May, Ryan M.
    Goebbert, Kevin H.
    Thielen, Jonathan E.
    Leeman, John R.
    Camron, M. Drew
    Bruick, Zachary
    Bruning, Eric C.
    Manser, Russell P.
    Arms, Sean C.
    Marsh, Patrick T.
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (10) : E2273 - E2284
  • [2] A Python']Python Library for Trace Analysis
    Dams, Dennis
    Havelund, Klaus
    Kauffman, Sean
    RUNTIME VERIFICATION (RV 2022), 2022, 13498 : 264 - 273
  • [3] A Python']Python library for probabilistic analysis of single-cell omics data
    Gayoso, Adam
    Lopez, Romain
    Xing, Galen
    Boyeau, Pierre
    Amiri, Valeh Valiollah Pour
    Hong, Justin
    Wu, Katherine
    Jayasuriya, Michael
    Mehlman, Edouard
    Langevin, Maxime
    Liu, Yining
    Samaran, Jules
    Misrachi, Gabriel
    Nazaret, Achille
    Clivio, Oscar
    Xu, Chenling
    Ashuach, Tal
    Gabitto, Mariano
    Lotfollahi, Mohammad
    Svensson, Valentine
    Beltrame, Eduardo da Veiga
    Kleshchevnikov, Vitalii
    Talavera-Lopez, Carlos
    Pachter, Lior
    Theis, Fabian J.
    Streets, Aaron
    Jordan, Michael I.
    Regier, Jeffrey
    Yosef, Nir
    NATURE BIOTECHNOLOGY, 2022, 40 (02) : 163 - 166
  • [4] A Python']Python library for summarizing event data into multivariate categorical data
    Sakuma, Tai
    23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [5] OpenTorsion: Python']Python library for torsional vibration analysis
    Laine, Sampo
    Hakonen, Urho
    Nieminen, Eetu
    Ala-Laurinaho, Riku
    Viitala, Raine
    SOFTWAREX, 2025, 29
  • [6] mdatagen: A python']python library for the artificial generation of missing data
    Mangussi, Arthur Dantas
    Santos, Miriam Seoane
    Lopes, Filipe Loyola
    Pereira, Ricardo Cardoso
    Lorena, Ana Carolina
    Abreu, Pedro Henriques
    NEUROCOMPUTING, 2025, 625
  • [7] AsaPy: A Python']Python Library for Aerospace Simulation Analysis
    Dantas, Joao P. A.
    Silva, Samara R.
    Gomes, Vitor C. F.
    Costa, Andre N.
    Samersla, Adrisson R.
    Geraldo, Diego
    Maximo, Marcos R. O. A.
    Yoneyama, Takashi
    PROCEEDINGS OF THE 38TH ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACM SIGSIM-PADS 2024, 2024, : 15 - 24
  • [8] PyKrev: A Python']Python Library for the Analysis of Complex Mixture FT-MS Data
    Kitson, Ezra
    Kew, Will
    Ding, Wen
    Bell, Nicholle G. A.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2021, 32 (05) : 1263 - 1267
  • [9] Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python']Python
    Ge, Jason
    Li, Xingguo
    Jiang, Haoming
    Liu, Han
    Zhang, Tong
    Wang, Mengdi
    Zhao, Tuo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [10] An Open Source Python']Python Library for Anonymizing Sensitive Data
    Diaz, Judith Sainz-Pardo
    Garcia, Alvaro Lopez
    SCIENTIFIC DATA, 2024, 11 (01)