reciprocalspaceship: a Python']Python library for crystallographic data analysis

被引:15
|
作者
Greisman, Jack B. [1 ]
Dalton, Kevin M. [1 ]
Hekstra, Doeke R. [1 ,2 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, 52 Oxford St, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
X-ray crystallography; data analysis; !text type='Python']Python[!/text; PHOTOACTIVE YELLOW PROTEIN; INTEGRATION;
D O I
10.1107/S160057672100755X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Crystallography uses the diffraction of X-rays, electrons or neutrons by crystals to provide invaluable data on the atomic structure of matter, from single atoms to ribosomes. Much of crystallography's success is due to the software packages developed to enable automated processing of diffraction data. However, the analysis of unconventional diffraction experiments can still pose significant challenges - many existing programs are closed source, sparsely documented, or challenging to integrate with modern libraries for scientific computing and machine learning. Described here is reciprocalspaceship, a Python library for exploring reciprocal space. It provides a tabular representation for reflection data from diffraction experiments that extends the widely used pandas library with built-in methods for handling space groups, unit cells and symmetry-based operations. As is illustrated, this library facilitates new modes of exploratory data analysis while supporting the prototyping, development and release of new methods.
引用
收藏
页码:1521 / 1529
页数:9
相关论文
共 50 条
  • [21] Python']Python based Memristor Model Library for Variability Analysis
    Radhakrishnan, Aswani
    Babu, Sreeja
    James, Alex
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [22] PyOphidia: A Python']Python library for High Performance Data Analytics at scale
    Elia, Donatello
    Palazzo, Cosimo
    Fiore, Sandro
    D'Anca, Alessandro
    Mariello, Andrea
    Aloisio, Giovanni
    SOFTWAREX, 2023, 24
  • [23] Analyzing microtomography data with Python']Python and the scikit-image library
    Gouillart, Emmanuelle
    Nunez-Iglesias, Juan
    van der Walt, Stefan
    ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2016, 2
  • [24] A New Python']Python Library for Spectroscopic Analysis with MIDAS Style
    Song, Yihan
    Luo, Ali
    Zhao, Yongheng
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXII, 2013, 475 : 267 - 270
  • [25] An Evaluation of Synthetic Data Generators Implemented in the Python']Python Library Synthcity
    Foessing, Emma
    Drechsler, Joerg
    PRIVACY IN STATISTICAL DATABASES, PSD 2024, 2024, 14915 : 178 - 193
  • [26] scikit-mobility: A Python']Python Library for the Analysis, Generation, and Risk Assessment of Mobility Data
    Pappalardo, Luca
    Simini, Filippo
    Barlacchi, Gianni
    Pellungrini, Roberto
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 103 (04): : 1 - 38
  • [27] Python']Python Materials Genomics (pymatgen): A robust, open-source python']python library for materials analysis
    Ong, Shyue Ping
    Richards, William Davidson
    Jain, Anubhav
    Hautier, Geoffroy
    Kocher, Michael
    Cholia, Shreyas
    Gunter, Dan
    Chevrier, Vincent L.
    Persson, Kristin A.
    Ceder, Gerbrand
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 : 314 - 319
  • [28] Geophysical data analysis using Python']Python
    Sáenz, J
    Zubillaga, J
    Fernández, J
    COMPUTERS & GEOSCIENCES, 2002, 28 (04) : 457 - 465
  • [29] Python']Python Scripting for CIAO Data Analysis
    Galle, Elizabeth C.
    Anderson, Craig S.
    Bonaventura, Nina R.
    Burke, D. J.
    Fruscione, Antonella
    Lee, Nicholas P.
    McDowell, Jonathan C.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 131 - 134
  • [30] naplib-python']python: Neural acoustic data processing and analysis tools in python']python
    Mischler, Gavin
    Raghavan, Vinay
    Keshishian, Menoua
    Mesgarani, Nima
    SOFTWARE IMPACTS, 2023, 17