MetPy: A Meteorological Python']Python Library for Data Analysis and Visualization

被引:50
|
作者
May, Ryan M. [1 ]
Goebbert, Kevin H. [2 ]
Thielen, Jonathan E. [3 ]
Leeman, John R. [1 ,4 ]
Camron, M. Drew [1 ]
Bruick, Zachary [1 ,5 ]
Bruning, Eric C. [6 ]
Manser, Russell P. [6 ]
Arms, Sean C. [1 ]
Marsh, Patrick T. [7 ]
机构
[1] Univ Corp Atmospher Res, Unidata, Boulder, CO 80301 USA
[2] Valparaiso Univ, Valparaiso, IN USA
[3] Colorado State Univ, Ft Collins, CO USA
[4] Leeman Geophys LLC, Siloam Springs, AR USA
[5] McKinsey & Co Inc, Denver, CO USA
[6] Texas Tech Univ, Lubbock, TX USA
[7] Storm Predict Ctr, NOAA, Norman, OK USA
基金
美国国家科学基金会;
关键词
Atmosphere; Algorithms; Data processing; distribution; Software;
D O I
10.1175/BAMS-D-21-0125.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy's development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy's suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed.
引用
收藏
页码:E2273 / E2284
页数:12
相关论文
共 50 条
  • [1] Musicaiz: A python']python library for symbolic music generation, analysis and visualization
    Hernandez-Olivan, Carlos
    Beltran, Jose R.
    [J]. SOFTWAREX, 2023, 22
  • [2] reciprocalspaceship: a Python']Python library for crystallographic data analysis
    Greisman, Jack B.
    Dalton, Kevin M.
    Hekstra, Doeke R.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1521 - 1529
  • [3] ChemPlot, a Python']Python Library for Chemical Space Visualization
    Sorkun, Murat Cihan
    Mullaj, Dajt
    Koelman, J. M. Vianney A.
    Er, Suleyman
    [J]. CHEMISTRYMETHODS, 2022, 2 (07):
  • [4] Gos: a declarative library for interactive genomics visualization in Python']Python
    Manz, Trevor
    L'Yi, Sehi
    Gehlenborg, Nils
    [J]. BIOINFORMATICS, 2023, 39 (01)
  • [5] A Python']Python Library for Trace Analysis
    Dams, Dennis
    Havelund, Klaus
    Kauffman, Sean
    [J]. RUNTIME VERIFICATION (RV 2022), 2022, 13498 : 264 - 273
  • [6] Toytree: A minimalist tree visualization and manipulation library for Python']Python
    Eaton, Deren A. R.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (01): : 187 - 191
  • [7] ST_VISIONS: A Python']Python Library for Interactive Visualization of Spatio-temporal Data
    Tritsarolis, Andreas
    Doulkeridis, Christos
    Pelekis, Nikos
    Theodoridis, Yannis
    [J]. 2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 244 - 247
  • [8] PYTHON']PYTHON WEB SERVER FOR SENSOR DATA VISUALIZATION
    Pohanka, Tomas
    Pechanec, Vilem
    Hejlova, Vendula
    [J]. INFORMATICS, GEOINFORMATICS AND REMOTE SENSING CONFERENCE PROCEEDINGS, SGEM 2016, VOL I, 2016, : 803 - +
  • [9] Development of NCL equivalent serial and parallel python']python routines for meteorological data analysis
    Gharat, Jatin
    Kumar, Bipin
    Ragha, Leena
    Barve, Amit
    Jeelani, Shaik Mohammad
    Clyne, John
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2022, 36 (03): : 337 - 355
  • [10] A Python']Python library for probabilistic analysis of single-cell omics data
    Gayoso, Adam
    Lopez, Romain
    Xing, Galen
    Boyeau, Pierre
    Amiri, Valeh Valiollah Pour
    Hong, Justin
    Wu, Katherine
    Jayasuriya, Michael
    Mehlman, Edouard
    Langevin, Maxime
    Liu, Yining
    Samaran, Jules
    Misrachi, Gabriel
    Nazaret, Achille
    Clivio, Oscar
    Xu, Chenling
    Ashuach, Tal
    Gabitto, Mariano
    Lotfollahi, Mohammad
    Svensson, Valentine
    Beltrame, Eduardo da Veiga
    Kleshchevnikov, Vitalii
    Talavera-Lopez, Carlos
    Pachter, Lior
    Theis, Fabian J.
    Streets, Aaron
    Jordan, Michael I.
    Regier, Jeffrey
    Yosef, Nir
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (02) : 163 - 166