pyjeo: A Python']Python Package for the Analysis of Geospatial Data

被引:5
|
作者
Kempeneers, Pieter [1 ]
Pesek, Ondrej [2 ]
De Marchi, Davide [1 ]
Soille, Pierre [1 ]
机构
[1] European Commiss, Joint Res Ctr, Via E Fermi 2749, I-21027 Ispra, Italy
[2] Tech Univ Prague, Czech Fac Civil Engn, Dept Geomat, CZ-16629 Prague, Czech Republic
关键词
open-source software; geospatial data; image processing;
D O I
10.3390/ijgi8100461
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new Python package, pyjeo, that deals with the analysis of geospatial data has been created by the Joint Research Centre (JRC). Adopting the principles of open science, the JRC strives for transparency and reproducibility of results. In this view, it has been decided to release pyjeo as free and open software. This paper describes the design of pyjeo and how its underlying C/C++ library was ported to Python. Strengths and limitations of the design choices are discussed. In particular, the data model that allows the generation of on-the-fly data cubes is of importance. Two uses cases illustrate how pyjeo can contribute to open science. The first is an example of large-scale processing, where pyjeo was used to create a global composite of Sentinel-2 data. The second shows how pyjeo can be imported within an interactive platform for image analysis and visualization. Using an innovative mechanism that interprets Python code within a C++ library on-the-fly, users can benefit from all functions in the pyjeo package. Images are processed in deferred mode, which is ideal for prototyping new algorithms on geospatial data, and assess the suitability of the results created on the fly at any scale and location.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Analysis of counting data: Development of the SATLAS Python']Python package
    Gins, W.
    de Groote, R. P.
    Bissell, M. L.
    Buitrago, C. Granados
    Ferrer, R.
    Lynch, K. M.
    Neyens, G.
    Sels, S.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 286 - 294
  • [2] EMDA: A Python']Python package for Electron Microscopy Data Analysis
    Warshamanage, Rangana
    Yamashita, Keitaro
    Murshudov, Garib N.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2022, 214 (01)
  • [3] MPDAF - A Python']Python Package for the Analysis of VLT/MUSE Data
    Piqueras, L.
    Conseil, S.
    Shepherd, M.
    Bacon, R.
    Leclercq, F.
    Richard, J.
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVI, 2019, 521 : 545 - 548
  • [4] ColiCoords: A Python']Python package for the analysis of bacterial fluorescence microscopy data
    Smit, Jochem H.
    Li, Yichen
    Warszawik, Eliza M.
    Herrmann, Andreas
    Cordes, Thorben
    [J]. PLOS ONE, 2019, 14 (06):
  • [5] scikit-fda: A Python']Python Package for Functional Data Analysis
    Ramos-Carreno, Carlos
    Carbajo-Berrocal, Miguel
    Torrecilla, Jose Luis
    Marcos, Pablo
    Suarez, Alberto
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2024, 109 (02): : 1 - 37
  • [6] PYCHEM: a multivariate analysis package for python']python
    Jarvis, Roger M.
    Broadhurst, David
    Johnson, Helen
    O'Boyle, Noel M.
    Goodacre, Royston
    [J]. BIOINFORMATICS, 2006, 22 (20) : 2565 - 2566
  • [7] The Multitaper Spectrum Analysis Package in Python']Python
    Prieto, German A.
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (03) : 1922 - 1929
  • [8] refellips: A Python']Python package for the analysis of variable angle spectroscopic ellipsometry data
    Robertson, Hayden
    Gresham, Isaac J.
    Prescott, Stuart W.
    Webber, Grant B.
    Wanless, Erica J.
    Nelson, Andrew
    [J]. SOFTWAREX, 2022, 20
  • [9] PySAP: Python']Python Sparse Data Analysis Package for multidisciplinary image processing
    Farrens, S.
    Grigis, A.
    El Gueddari, L.
    Ramzi, Z.
    Chaithya, G. R.
    Starck, S.
    Sarthou, B.
    Cherkaoui, H.
    Ciuciu, P.
    Starck, J-L
    [J]. ASTRONOMY AND COMPUTING, 2020, 32
  • [10] Nmrglue: an open source Python']Python package for the analysis of multidimensional NMR data
    Helmus, Jonathan J.
    Jaroniec, Christopher P.
    [J]. JOURNAL OF BIOMOLECULAR NMR, 2013, 55 (04) : 355 - 367