A Python']Python library for exploratory data analysis on twitter data based on tokens and aggregated origin-destination information

被引:3
|
作者
Graff, Mario [1 ,3 ,4 ]
Moctezuma, Daniela [2 ,3 ]
Miranda-Jimenez, Sabino [1 ,3 ]
Tellez, Eric S. [1 ,3 ]
机构
[1] INFOTEC Ctr Invest & Innovac Tecnol Informac & Co, Circuito Tecnopolo 112,Fracc Tecnopolo Pocitos 2, Aguascalientes 20313, Aguascalientes, Mexico
[2] CentroGEO Ctr Invest Ciencias Informac Geoespacia, Circuito Tecnopolo Norte 117, Aguascalientes 20313, Aguascalientes, Mexico
[3] CONACyT Consejo Nacl Ciencia & Tecnol, Direcc Catedras, Insurgentes Sur 1582, Mexico City 03940, DF, Mexico
[4] Colgate Univ, Dept Comp Sci, 13 Oak Dr, Hamilton, NY 13346 USA
关键词
Twitter exploratory analysis; Mobility patterns; Open-source [!text type='Python']Python[!/text] library;
D O I
10.1016/j.cageo.2021.105012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Twitter is perhaps the social media more amenable for research. It requires only a few steps to obtain information, and there are plenty of libraries that can help in this regard. Nonetheless, knowing whether a particular event is expressed on Twitter is a challenging task that requires a considerable collection of tweets. This proposal aims to facilitate, to a researcher interested, the process of mining events on Twitter by opening a collection of processed information taken from Twitter since December 2015. The events could be related to natural disasters, health issues, and people's mobility, among other studies that can be pursued with the library proposed. Different applications are presented in this contribution to illustrate the library's capabilities: an exploratory analysis of the topics discovered in tweets, a study on similarity among dialects of the Spanish language, and a mobility report on different countries. In summary, the Python library presented is applied to different domains and retrieves a plethora of information in terms of frequencies by day of words and bi-grams of words for Arabic, English, Spanish, and Russian languages. As well as mobility information related to the number of travels among locations for more than 200 countries or territories.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] TOWARDS AN OPEN SOURCE PYTHON']PYTHON LIBRARY FOR AUTOMATED EXPLORATORY SPATIAL DATA ANALYSIS
    de Kock, Nicholas
    Rautenbach, Victoria
    Fabris-Rotelli, Inger
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 43-B4 : 91 - 98
  • [2] reciprocalspaceship: a Python']Python library for crystallographic data analysis
    Greisman, Jack B.
    Dalton, Kevin M.
    Hekstra, Doeke R.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1521 - 1529
  • [3] MetPy: A Meteorological Python']Python Library for Data Analysis and Visualization
    May, Ryan M.
    Goebbert, Kevin H.
    Thielen, Jonathan E.
    Leeman, John R.
    Camron, M. Drew
    Bruick, Zachary
    Bruning, Eric C.
    Manser, Russell P.
    Arms, Sean C.
    Marsh, Patrick T.
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (10) : E2273 - E2284
  • [4] Updating origin-destination matrices with aggregated data of GPS traces
    Ge, Qian
    Fukuda, Daisuke
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2016, 69 : 291 - 312
  • [5] Travel Destination Prediction Based on Origin-Destination Data
    Liu, Shudong
    Zhang, Liaoyuan
    Chen, Xu
    COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS, 2021, 1194 : 315 - 325
  • [6] A Python']Python library for probabilistic analysis of single-cell omics data
    Gayoso, Adam
    Lopez, Romain
    Xing, Galen
    Boyeau, Pierre
    Amiri, Valeh Valiollah Pour
    Hong, Justin
    Wu, Katherine
    Jayasuriya, Michael
    Mehlman, Edouard
    Langevin, Maxime
    Liu, Yining
    Samaran, Jules
    Misrachi, Gabriel
    Nazaret, Achille
    Clivio, Oscar
    Xu, Chenling
    Ashuach, Tal
    Gabitto, Mariano
    Lotfollahi, Mohammad
    Svensson, Valentine
    Beltrame, Eduardo da Veiga
    Kleshchevnikov, Vitalii
    Talavera-Lopez, Carlos
    Pachter, Lior
    Theis, Fabian J.
    Streets, Aaron
    Jordan, Michael I.
    Regier, Jeffrey
    Yosef, Nir
    NATURE BIOTECHNOLOGY, 2022, 40 (02) : 163 - 166
  • [7] Segmenting with big data analytics and Python']Python: A quantitative exploratory analysis of household savings
    Cuomo, Maria Teresa
    Tortora, Debora
    Colosimo, Ivan
    Celsi, Lorenzo Ricciardi
    Genovino, Cinzia
    Festa, Giuseppe
    La Rocca, Michele
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 191
  • [8] Python']Python Data Analysis and Attribute Information Extraction Method Based on Intelligent Decision System
    Li, Yongquan
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [9] PyKrev: A Python']Python Library for the Analysis of Complex Mixture FT-MS Data
    Kitson, Ezra
    Kew, Will
    Ding, Wen
    Bell, Nicholle G. A.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2021, 32 (05) : 1263 - 1267
  • [10] BIG DATA AND ORIGIN-DESTINATION MATRICES: MAPPING OF MOBILITY FLOWS IN SPAIN BASED ON TWITTER DATA AND COMPARISON WITH CELL PHONE DATA
    Osorio Arjona, Joaquin
    GEOFOCUS-REVISTA INTERNACIONAL DE CIENCIA Y TECNOLOGIA DE LA INFORMACION GEOGRAFICA, 2022, (29): : 113 - 130