Submarine Landslide Susceptibility and Spatial Distribution Using Different Unsupervised Machine Learning Models

被引:9
|
作者
Du, Xing [1 ,2 ]
Sun, Yongfu [3 ]
Song, Yupeng [1 ]
Xiu, Zongxiang [1 ]
Su, Zhiming [1 ]
机构
[1] MNR, Inst Oceanog 1, Qingdao 266061, Peoples R China
[2] Ocean Univ China, Coll Environm Sci & Engn, Qingdao 266100, Peoples R China
[3] Natl Deep Sea Ctr, Qingdao 266237, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 20期
基金
中国国家自然科学基金;
关键词
submarine landslide; machine learning; hazard susceptibility; spatial distribution; SLOPE STABILITY ANALYSIS; PREDICTION;
D O I
10.3390/app122010544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A submarine landslide is a well-known geohazard that can cause significant damage to offshore engineering facilities. Most standard predicting and mapping methods require expert knowledge, supervision, and fieldwork. In this research, the main objective was to analyze the potential of unsupervised machine learning methods and compare the performance of three different unsupervised machine learning models (k-means, spectral clustering, and hierarchical clustering) in modeling the susceptibility of the submarine landslide. Nine groups of geological factors were selected as the input parameters, which were obtained through field surveys. To estimate submarine landslide susceptibility, all input factors were separated into three or four groups based on data features and environmental variables. Finally, the goodness-of-fit and accuracy of models were validated with both internal metrics (Calinski-Harabasz index, silhouette index, and Davies-Bouldin index) and external metrics (existing landslide distribution, hydrodynamic distribution, and liquefication distribution). The findings of k-means, spectral clustering, and hierarchical clustering performed commendably and accurately in forecasting the submarine landslide susceptibility. Spectral clustering has the greatest congruence with environmental geology parameters. Therefore, the unsupervised machine learning model can be used in submarine-landslide-predicting studies, and the spectral clustering method performed best. Furthermore, machine learning can improve submarine landslide mapping in the future with the development of models and the extension of geological data related to submarine landslides.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Landslide Susceptibility Mapping using Machine Learning Algorithm
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Wang, Run
    Shah, Safeer Ullah
    Shoaib, Muhammad
    Ali, Nafees
    Xu, Daozhu
    Ma, Chao
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2022, 8 (02): : 209 - 224
  • [22] Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China
    Gao, Jiangping
    Shi, Xiangyang
    Li, Linghui
    Zhou, Ziqiang
    Wang, Junfeng
    SUSTAINABILITY, 2022, 14 (24)
  • [23] Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping
    Zhang, Tingyu
    Li, Yanan
    Wang, Tao
    Wang, Huanyuan
    Chen, Tianqing
    Sun, Zenghui
    Luo, Dan
    Li, Chao
    Han, Ling
    GEOSCIENCE LETTERS, 2022, 9 (01)
  • [24] Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping
    Tingyu Zhang
    Yanan Li
    Tao Wang
    Huanyuan Wang
    Tianqing Chen
    Zenghui Sun
    Dan Luo
    Chao Li
    Ling Han
    Geoscience Letters, 9
  • [25] Spatial Prediction of Landslide Susceptibility using Various Machine Learning Based Binary Classification Methods
    Anh, Nguyen Duc
    Cuong, Tran Quoc
    Quan, Nguyen Cong
    Thanh, Nguyen Trung
    Hieu, Tran Trung
    Thao, Bui Phuong
    Trinh, Phan Trong
    Phong, Tran Van
    Dat, Vu Cao
    Prakash, Indra
    Pham, Binh Thai
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2024, 100 (10) : 1477 - 1492
  • [26] Combining Evolutionary Algorithms and Machine Learning Models in Landslide Susceptibility Assessments
    Chen, Wei
    Chen, Yunzhi
    Tsangaratos, Paraskevas
    Ilia, Ioanna
    Wang, Xiaojing
    REMOTE SENSING, 2020, 12 (23) : 1 - 26
  • [27] Landslide susceptibility and building exposure assessment using machine learning models and geospatial analysis techniques
    Luu, Chinh
    Ha, Hang
    Tran, Xuan Thong
    Ha Vu, Thai
    Bui, Quynh Duy
    ADVANCES IN SPACE RESEARCH, 2024, 74 (11) : 5489 - 5513
  • [28] Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models
    Raut, Subrata
    Dutta, Dipanwita
    Bera, Debarati
    Samanta, Rajeeb
    GEOLOGICAL JOURNAL, 2024,
  • [29] Advanced landslide susceptibility mapping and analysis of driving mechanisms using ensemble machine learning models
    Maashi, Mashael
    Alzaben, Nada
    Negm, Noha
    Venkatesan, V.
    Begum, S. Sabarunisha
    Geetha, P.
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2025, 151
  • [30] Landslide susceptibility mapping using XGBoost machine learning method
    Badola, Shubham
    Mishra, Varun Narayan
    Parkash, Surya
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 148 - 151