Submarine Landslide Susceptibility and Spatial Distribution Using Different Unsupervised Machine Learning Models

被引:9
|
作者
Du, Xing [1 ,2 ]
Sun, Yongfu [3 ]
Song, Yupeng [1 ]
Xiu, Zongxiang [1 ]
Su, Zhiming [1 ]
机构
[1] MNR, Inst Oceanog 1, Qingdao 266061, Peoples R China
[2] Ocean Univ China, Coll Environm Sci & Engn, Qingdao 266100, Peoples R China
[3] Natl Deep Sea Ctr, Qingdao 266237, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 20期
基金
中国国家自然科学基金;
关键词
submarine landslide; machine learning; hazard susceptibility; spatial distribution; SLOPE STABILITY ANALYSIS; PREDICTION;
D O I
10.3390/app122010544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A submarine landslide is a well-known geohazard that can cause significant damage to offshore engineering facilities. Most standard predicting and mapping methods require expert knowledge, supervision, and fieldwork. In this research, the main objective was to analyze the potential of unsupervised machine learning methods and compare the performance of three different unsupervised machine learning models (k-means, spectral clustering, and hierarchical clustering) in modeling the susceptibility of the submarine landslide. Nine groups of geological factors were selected as the input parameters, which were obtained through field surveys. To estimate submarine landslide susceptibility, all input factors were separated into three or four groups based on data features and environmental variables. Finally, the goodness-of-fit and accuracy of models were validated with both internal metrics (Calinski-Harabasz index, silhouette index, and Davies-Bouldin index) and external metrics (existing landslide distribution, hydrodynamic distribution, and liquefication distribution). The findings of k-means, spectral clustering, and hierarchical clustering performed commendably and accurately in forecasting the submarine landslide susceptibility. Spectral clustering has the greatest congruence with environmental geology parameters. Therefore, the unsupervised machine learning model can be used in submarine-landslide-predicting studies, and the spectral clustering method performed best. Furthermore, machine learning can improve submarine landslide mapping in the future with the development of models and the extension of geological data related to submarine landslides.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Exploring Complementary Models Consisting of Machine Learning Algorithms for Landslide Susceptibility Mapping
    Hu, Han
    Wang, Changming
    Liang, Zhu
    Gao, Ruiyuan
    Li, Bailong
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [42] Generating a Landslide Susceptibility Map Using Integrated Meta-Heuristic Optimization and Machine Learning Models
    Bostan, Tuba
    SUSTAINABILITY, 2024, 16 (21)
  • [43] A comparative study of regional landslide susceptibility mapping with multiple machine learning models
    Wang, Yunhao
    Wang, Luqi
    Liu, Songlin
    Liu, Pengfei
    Zhu, Zhengwei
    Zhang, Wengang
    GEOLOGICAL JOURNAL, 2024, 59 (09) : 2383 - 2400
  • [44] Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran
    Arabameri, Alireza
    Saha, Sunil
    Roy, Jagabandhu
    Chen, Wei
    Blaschke, Thomas
    Dieu Tien Bui
    REMOTE SENSING, 2020, 12 (03)
  • [45] Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County,Three Gorges Reservoir, China
    Ting Xiao
    Kunlong Yin
    Tianlu Yao
    Shuhao Liu
    Acta Geochimica, 2019, (05) : 654 - 669
  • [46] Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China
    Xiao, Ting
    Yin, Kunlong
    Yao, Tianlu
    Liu, Shuhao
    ACTA GEOCHIMICA, 2019, 38 (05) : 654 - 669
  • [47] Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County,Three Gorges Reservoir, China
    Ting Xiao
    Kunlong Yin
    Tianlu Yao
    Shuhao Liu
    Acta Geochimica, 2019, 38 (05) : 654 - 669
  • [48] Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China
    Ting Xiao
    Kunlong Yin
    Tianlu Yao
    Shuhao Liu
    Acta Geochimica, 2019, 38 : 654 - 669
  • [49] Optimizing landslide susceptibility mapping using machine learning and geospatial techniques
    Agboola, Gazali
    Beni, Leila Hashemi
    Elbayoumi, Tamer
    Thompson, Gary
    ECOLOGICAL INFORMATICS, 2024, 81
  • [50] Landslide Susceptibility Mapping Using Machine Learning: A Danish Case Study
    Ageenko, Angelina
    Hansen, Laerke Christina
    Lyng, Kevin Lundholm
    Bodum, Lars
    Arsanjani, Jamal Jokar
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (06)