Submarine Landslide Susceptibility and Spatial Distribution Using Different Unsupervised Machine Learning Models

被引:9
|
作者
Du, Xing [1 ,2 ]
Sun, Yongfu [3 ]
Song, Yupeng [1 ]
Xiu, Zongxiang [1 ]
Su, Zhiming [1 ]
机构
[1] MNR, Inst Oceanog 1, Qingdao 266061, Peoples R China
[2] Ocean Univ China, Coll Environm Sci & Engn, Qingdao 266100, Peoples R China
[3] Natl Deep Sea Ctr, Qingdao 266237, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 20期
基金
中国国家自然科学基金;
关键词
submarine landslide; machine learning; hazard susceptibility; spatial distribution; SLOPE STABILITY ANALYSIS; PREDICTION;
D O I
10.3390/app122010544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A submarine landslide is a well-known geohazard that can cause significant damage to offshore engineering facilities. Most standard predicting and mapping methods require expert knowledge, supervision, and fieldwork. In this research, the main objective was to analyze the potential of unsupervised machine learning methods and compare the performance of three different unsupervised machine learning models (k-means, spectral clustering, and hierarchical clustering) in modeling the susceptibility of the submarine landslide. Nine groups of geological factors were selected as the input parameters, which were obtained through field surveys. To estimate submarine landslide susceptibility, all input factors were separated into three or four groups based on data features and environmental variables. Finally, the goodness-of-fit and accuracy of models were validated with both internal metrics (Calinski-Harabasz index, silhouette index, and Davies-Bouldin index) and external metrics (existing landslide distribution, hydrodynamic distribution, and liquefication distribution). The findings of k-means, spectral clustering, and hierarchical clustering performed commendably and accurately in forecasting the submarine landslide susceptibility. Spectral clustering has the greatest congruence with environmental geology parameters. Therefore, the unsupervised machine learning model can be used in submarine-landslide-predicting studies, and the spectral clustering method performed best. Furthermore, machine learning can improve submarine landslide mapping in the future with the development of models and the extension of geological data related to submarine landslides.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
    Ado, Moziihrii
    Amitab, Khwairakpam
    Maji, Arnab Kumar
    Jasinska, Elzbieta
    Gono, Radomir
    Leonowicz, Zbigniew
    Jasinski, Michal
    REMOTE SENSING, 2022, 14 (13)
  • [32] Correction: Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping
    Tingyu Zhang
    Yanan Li
    Tao Wang
    Huanyuan Wang
    Tianqing Chen
    Zenghui Sun
    Dan Luo
    Chao Li
    Ling Han
    Geoscience Letters, 10
  • [33] Landslide susceptibility assessment using SVM machine learning algorithm
    Marjanovic, Milos
    Kovacevic, Milos
    Bajat, Branislav
    Vozenilek, Vit
    ENGINEERING GEOLOGY, 2011, 123 (03) : 225 - 234
  • [34] Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping
    Gu, Tengfei
    Duan, Ping
    Wang, Mingguo
    Li, Jia
    Zhang, Yanke
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [35] Effect of different mapping units, spatial resolutions, and machine learning algorithms on landslide susceptibility mapping at the township scale
    Liu, Xiaokang
    Shao, Shuai
    Zhang, Chen
    Shao, Shengjun
    ENVIRONMENTAL EARTH SCIENCES, 2025, 84 (05)
  • [36] Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Zheng, Ying
    Zhou, Yulong
    Daud, Hamza
    REMOTE SENSING, 2023, 15 (19)
  • [37] Combining spatial response features and machine learning classifiers for landslide susceptibility mapping
    Wei, Ruilong
    Ye, Chengming
    Sui, Tianbo
    Ge, Yonggang
    Li, Yao
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 107
  • [38] Improving Spatial Agreement in Machine Learning-Based Landslide Susceptibility Mapping
    Adnan, Mohammed Sarfaraz Gani
    Rahman, Md Salman
    Ahmed, Nahian
    Ahmed, Bayes
    Rabbi, Md. Fazleh
    Rahman, Rashedur M.
    REMOTE SENSING, 2020, 12 (20) : 1 - 23
  • [39] Spatial Uncertainty of Target Patterns Generated by Different Prediction Models of Landslide Susceptibility
    Fabbri, Andrea G.
    Patera, Antonio
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [40] Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping
    Kadavi, Prima Riza
    Lee, Chang-Wook
    Lee, Saro
    REMOTE SENSING, 2018, 10 (08)