THE PERTURBATION METHOD TO SOLVE SUBDIFFUSION-REACTION EQUATIONS

被引:2
|
作者
Lewandowska, Katarzyna D. [1 ]
Kosztolowicz, Tadeusz [2 ]
Piwnik, Mateusz [2 ]
机构
[1] Med Univ Gdansk, Dept Radiol Informat & Stat, PL-80210 Gdansk, Poland
[2] Jan Kochanowski Univ, Inst Phys, PL-25406 Kielce, Poland
来源
ACTA PHYSICA POLONICA B | 2012年 / 43卷 / 05期
关键词
D O I
10.5506/APhysPolB.43.1065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the perturbation method to approximately solve subdiffusion-reaction equations. Within this method we obtain the solutions of the zeroth and the first order. The comparison our analytical solutions with the numerical results shown that the perturbation method can be useful to find approximate solutions of nonlinear subdiffusion-reaction equations.
引用
收藏
页码:1065 / 1072
页数:8
相关论文
共 50 条
  • [11] Reaction-subdiffusion equations
    Sokolov, IM
    Schmidt, MGW
    Sagués, F
    PHYSICAL REVIEW E, 2006, 73 (03): : 1 - 4
  • [12] Reaction-subdiffusion equations for the A⇆B reaction
    Sagues, F.
    Shkilev, V. P.
    Sokolov, I. M.
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [13] A perturbation method to solve dispersion equations for water waves over dissipative media
    Mendez, FJ
    Losada, IJ
    COASTAL ENGINEERING, 2004, 51 (01) : 81 - 89
  • [14] Modification of perturbation-iteration method to solve different types of nonlinear differential equations
    Bildik, Necdet
    Deniz, Sinan
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [15] Homotopy perturbation method for solving reaction-diffusion equations
    Wang, Yu-Xi
    Si, Hua-You
    Mo, Lu-Feng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [16] An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Subdiffusion and Reaction Subdiffusion Equations
    Doha, E. H.
    Bhrawy, A. H.
    Ezz-Eldien, S. S.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (02):
  • [17] Superconvergence Error Estimate of a Finite Element Method on Nonuniform Time Meshes for Reaction–Subdiffusion Equations
    Jincheng Ren
    Hong-lin Liao
    Zhimin Zhang
    Journal of Scientific Computing, 2020, 84
  • [18] HOMOTOPY PERTURBATION METHOD COMBINED WITH ZZ TRANSFORM TO SOLVE SOME NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
    Riabi, Lakhdar
    Belghaba, Kacem
    Cherif, Mountassir Hamdi
    Ziane, Djelloul
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (03): : 406 - 419
  • [19] REACTION-SUBDIFFUSION EQUATIONS WITH SPECIES-DEPENDENT MOVEMENT
    Alexander, Amanda M.
    Lawley, Sean D.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (06) : 2457 - 2479
  • [20] Finite difference approach for variable order reaction–subdiffusion equations
    M. Adel
    Advances in Difference Equations, 2018