THE PERTURBATION METHOD TO SOLVE SUBDIFFUSION-REACTION EQUATIONS

被引:2
|
作者
Lewandowska, Katarzyna D. [1 ]
Kosztolowicz, Tadeusz [2 ]
Piwnik, Mateusz [2 ]
机构
[1] Med Univ Gdansk, Dept Radiol Informat & Stat, PL-80210 Gdansk, Poland
[2] Jan Kochanowski Univ, Inst Phys, PL-25406 Kielce, Poland
来源
ACTA PHYSICA POLONICA B | 2012年 / 43卷 / 05期
关键词
D O I
10.5506/APhysPolB.43.1065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the perturbation method to approximately solve subdiffusion-reaction equations. Within this method we obtain the solutions of the zeroth and the first order. The comparison our analytical solutions with the numerical results shown that the perturbation method can be useful to find approximate solutions of nonlinear subdiffusion-reaction equations.
引用
收藏
页码:1065 / 1072
页数:8
相关论文
共 50 条
  • [41] Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction-Subdiffusion Equations
    Li, Dongfang
    Zhang, Jiwei
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 848 - 866
  • [42] Existence of solution for an infinite system of nonlinear integral equations via measure of noncompactness and homotopy perturbation method to solve it
    Hazarika, Bipan
    Srivastava, H. M.
    Arab, Reza
    Rabbani, Mohsen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 : 341 - 352
  • [43] Numerical method for two dimensional fractional reaction subdiffusion equation
    H. Huang
    X. Cao
    The European Physical Journal Special Topics, 2013, 222 : 1961 - 1973
  • [44] Numerical method for two dimensional fractional reaction subdiffusion equation
    Huang, H.
    Cao, X.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1961 - 1973
  • [45] VARIATIONAL ITERATION METHOD FOR SUBDIFFUSION EQUATIONS WITH THE RIEMANN-LIOUVILLE DERIVATIVES
    Wei, Ming-Bo
    Wu, Guo-Cheng
    HEAT TRANSFER RESEARCH, 2013, 44 (05) : 409 - 415
  • [46] Discrete Subdiffusion Equations with Memory
    Rodrigo Ponce
    Applied Mathematics & Optimization, 2021, 84 : 3475 - 3497
  • [47] How to Derive Subdiffusion Equations?
    Kosztolowicz, T.
    ACTA PHYSICA POLONICA A, 2021, 139 (03) : 314 - 318
  • [48] Discrete Subdiffusion Equations with Memory
    Ponce, Rodrigo
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 3475 - 3497
  • [49] A dynamically consistent method to solve nonlinear multidimensional advection-reaction equations with fractional diffusion
    Macias-Diaz, J. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 366 : 71 - 88
  • [50] An efficient nonpolynomial spline method for distributed order fractional subdiffusion equations
    Li, Xuhao
    Wong, Patricia J. Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) : 4906 - 4922