THE PERTURBATION METHOD TO SOLVE SUBDIFFUSION-REACTION EQUATIONS

被引:2
|
作者
Lewandowska, Katarzyna D. [1 ]
Kosztolowicz, Tadeusz [2 ]
Piwnik, Mateusz [2 ]
机构
[1] Med Univ Gdansk, Dept Radiol Informat & Stat, PL-80210 Gdansk, Poland
[2] Jan Kochanowski Univ, Inst Phys, PL-25406 Kielce, Poland
来源
ACTA PHYSICA POLONICA B | 2012年 / 43卷 / 05期
关键词
D O I
10.5506/APhysPolB.43.1065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the perturbation method to approximately solve subdiffusion-reaction equations. Within this method we obtain the solutions of the zeroth and the first order. The comparison our analytical solutions with the numerical results shown that the perturbation method can be useful to find approximate solutions of nonlinear subdiffusion-reaction equations.
引用
收藏
页码:1065 / 1072
页数:8
相关论文
共 50 条
  • [21] Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains
    Abad, E.
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    Le Vot, F.
    Yuste, S. B.
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [23] The Homotopy Perturbation Method to Solve a Wave Equation
    Gouder, P. M.
    Kolli, V. H.
    Page, Md. Hanif
    Chavaraddi, Krishna B.
    Chandaragi, Praveen
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (02): : 691 - 701
  • [24] Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction–Subdiffusion Equations
    Dongfang Li
    Jiwei Zhang
    Zhimin Zhang
    Journal of Scientific Computing, 2018, 76 : 848 - 866
  • [25] Superconvergence Error Estimate of a Finite Element Method on Nonuniform Time Meshes for Reaction-Subdiffusion Equations
    Ren, Jincheng
    Liao, Hong-lin
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [26] Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications
    Lawley, Sean D.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [27] Application of He?s homotopy and perturbation method to solve heat transfer equations: A python']python approach
    Dumka, Pankaj
    Pawar, Parth Singh
    Sauda, Abhay
    Shukla, Gaurav
    Mishra, Dhananjay R.
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 170
  • [28] Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations
    Osman, Sheelan
    Langlands, Trevor
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2166 - 2192
  • [29] Finite difference approach for variable order reaction-subdiffusion equations
    Adel, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [30] Singular perturbation for reaction diffusion equations
    Mo Jiaqi
    Wang Hui
    Zhu Jiang
    Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (3) : 251 - 257