THE PERTURBATION METHOD TO SOLVE SUBDIFFUSION-REACTION EQUATIONS

被引:2
|
作者
Lewandowska, Katarzyna D. [1 ]
Kosztolowicz, Tadeusz [2 ]
Piwnik, Mateusz [2 ]
机构
[1] Med Univ Gdansk, Dept Radiol Informat & Stat, PL-80210 Gdansk, Poland
[2] Jan Kochanowski Univ, Inst Phys, PL-25406 Kielce, Poland
来源
ACTA PHYSICA POLONICA B | 2012年 / 43卷 / 05期
关键词
D O I
10.5506/APhysPolB.43.1065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the perturbation method to approximately solve subdiffusion-reaction equations. Within this method we obtain the solutions of the zeroth and the first order. The comparison our analytical solutions with the numerical results shown that the perturbation method can be useful to find approximate solutions of nonlinear subdiffusion-reaction equations.
引用
收藏
页码:1065 / 1072
页数:8
相关论文
共 50 条
  • [31] SINGULAR PERTURBATION FOR REACTION DIFFUSION EQUATIONS
    Mo Jiaqi Wang Hui Zhu Jiang1 Dept. of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2003, (03) : 251 - 257
  • [32] An optimal estimate for linear reaction subdiffusion equations with Neumann boundary conditions
    Cheng, Xiujun
    Xiong, Wenzhuo
    Wang, Huiru
    STOCHASTICS AND DYNAMICS, 2023, 23 (08)
  • [33] Approximate inversion method for time-fractional subdiffusion equations
    Lu, Xin
    Pang, Hong-Kui
    Sun, Hai-Wei
    Vong, Seak-Weng
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (02)
  • [34] A NEW METHOD TO SOLVE NONLINEAR EQUATIONS
    ROY, TS
    ATHITHAN, G
    GANAGI, MS
    REDDY, AS
    INFORMATION PROCESSING LETTERS, 1994, 50 (02) : 75 - 79
  • [35] An Efficient Compact Difference Method for Temporal Fractional Subdiffusion Equations
    Ren, Lei
    Liu, Lei
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [36] A METHOD TO SOLVE FORCED POWER EQUATIONS
    SCHRAMM, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (04): : T102 - T103
  • [37] Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations
    Sheelan Osman
    Trevor Langlands
    Fractional Calculus and Applied Analysis, 2022, 25 : 2166 - 2192
  • [38] Kinetic equations for reaction-subdiffusion systems: Derivation and stability analysis
    Yadav, A.
    Horsthemke, Werner
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [39] ONE METHOD TO SOLVE DIRAC EQUATIONS
    MESHKOV, AG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1980, (12): : 41 - 43
  • [40] ONE METHOD TO SOLVE DIRAC EQUATIONS
    MELNICHE.IP
    PIK, EM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR, 1972, (10): : 887 - &