In this paper, we consider superconvergence error estimates of finite element method approximation of Caputo’s time fractional reaction–subdiffusion equations under nonuniform time meshes. For the standard Galerkin method we see that the optimal order error estimate of temporal direction cannot be derived from the weak formulation of the problem. We establish a time-space error splitting argument, which are called the temporal error and the spatial error, respectively. The temporal error is proved skillfully based on an improved discrete Grönwall inequality. We obtain the sharp temporal H1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^1$$\end{document}-norm error estimates with respect to the convergence order of the approximate solution and H1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^1$$\end{document}-norm superclose results are given in details. Furthermore, by virtue of the interpolated postprocessing techniques, the global H1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^1$$\end{document}-norm superconvergence results are presented. Finally, we present some numerical results that give insight into the reliability of the theoretical analysis.
机构:
Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450046, Peoples R ChinaHenan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450046, Peoples R China
Ren, Jincheng
Liao, Hong-lin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R ChinaHenan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450046, Peoples R China
Liao, Hong-lin
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USAHenan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450046, Peoples R China
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R ChinaXiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
Chen, Chuanjun
Zhao, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R ChinaXiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
机构:
Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
Chen, Jie
Wang, Desheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeHong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
Wang, Desheng
Du, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, University Pk, PA 16802 USAHong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China