A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
来源
MULTISCALE MODELING & SIMULATION | 2016年 / 14卷 / 04期
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [31] Asymptotic analysis of a multiscale parabolic problem with a rough fast oscillating interface
    Donato, Patrizia
    Jose, Editha C.
    Onofrei, Daniel
    ARCHIVE OF APPLIED MECHANICS, 2019, 89 (03) : 437 - 465
  • [32] Asymptotic analysis of a multiscale parabolic problem with a rough fast oscillating interface
    Patrizia Donato
    Editha C. Jose
    Daniel Onofrei
    Archive of Applied Mechanics, 2019, 89 : 437 - 465
  • [33] Generalized Multiscale Finite Element Method for Elastic Wave Propagation in the Frequency Domain
    Gavrilieva, Uygulana
    Vasilyeva, Maria
    Chung, Eric T.
    COMPUTATION, 2020, 8 (03)
  • [34] A mortar element method for coupling natural boundary element method and finite element method for unbounded domain problem
    Zhang, S
    Yu, DH
    RECENT ADVANCES IN ADAPTIVE COMPUTATION, PROCEEDINGS, 2005, 383 : 361 - 374
  • [35] OVERSAMPLING FOR THE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Peterseim, Daniel
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1149 - 1175
  • [36] A multiscale finite-element method
    Rank, E
    Krause, R
    COMPUTERS & STRUCTURES, 1997, 64 (1-4) : 139 - 144
  • [37] AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Ohlberger, Mario
    Schweizer, Ben
    MULTISCALE MODELING & SIMULATION, 2014, 12 (03): : 1078 - 1107
  • [38] Multiscale finite-element method
    Rank, E.
    Krause, R.
    Computers and Structures, 1997, 64 (1-4): : 139 - 144
  • [39] Application of the generalized multiscale finite element method in an inverse random source problem
    Fu, Shubin
    Zhang, Zhidong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [40] Mixed Generalized Multiscale Finite Element Method for flow problem in thin domains
    Spiridonov, Denis
    Vasilyeva, Maria
    Wang, Min
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416