A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
来源
MULTISCALE MODELING & SIMULATION | 2016年 / 14卷 / 04期
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [11] A PRACTICAL FINITE-ELEMENT APPROXIMATION OF A SEMIDEFINITE NEUMANN PROBLEM ON A CURVED DOMAIN
    BARRETT, JW
    ELLIOTT, CM
    NUMERISCHE MATHEMATIK, 1987, 51 (01) : 23 - 36
  • [12] Grid adaptation for the Dirichlet–Neumann representation method and the multiscale mixed finite-element method
    Knut-Andreas Lie
    Jostein R. Natvig
    Stein Krogstad
    Yahan Yang
    Xiao-Hui Wu
    Computational Geosciences, 2014, 18 : 357 - 372
  • [13] A NONTRADITIONAL APPROACH FOR SOLVING THE NEUMANN PROBLEM BY THE FINITE-ELEMENT METHOD
    KRIZEK, M
    NEITTAANMAKI, P
    VONDRAK, M
    MATEMATICA APLICADA E COMPUTACIONAL, 1992, 11 (01): : 31 - 40
  • [14] A finite element method for a noncoercive elliptic problem with neumann boundary conditions
    Kavaliou, Klim
    Tobiska, Lutz
    Computational Methods in Applied Mathematics, 2012, 12 (02) : 168 - 183
  • [15] An Online Generalized Multiscale Finite Element Method for Dual-continuum Unsaturated Filtration Problem in Domains with Rough Boundaries
    Spiridonov, D. A.
    Huang, J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (10) : 4170 - 4182
  • [16] Superconvergence Analysis of a Multiscale Finite Element Method for Elliptic Problems with Rapidly Oscillating Coefficients
    Guan, Xiaofei
    Wang, Xiaoling
    Wang, Cheng
    Liu, Xian
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [17] A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients
    Chen, Yanping
    Huang, Yunqing
    Liu, Wenbin
    Yan, Ningning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 297 - 313
  • [18] Finite Element Domain Decomposition Method for Rough Sea Surface Scattering
    Ozgun, Ozlem
    Kuzuoglu, Mustafa
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 2089 - 2090
  • [19] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [20] ON FINITE-ELEMENT METHODS FOR THE NEUMANN PROBLEM
    MOLCHANOV, IN
    GALBA, EF
    NUMERISCHE MATHEMATIK, 1985, 46 (04) : 587 - 598