A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
来源
MULTISCALE MODELING & SIMULATION | 2016年 / 14卷 / 04期
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [21] On the finite element solution of the pure Neumann problem
    Bochev, P
    Lehoucq, RB
    SIAM REVIEW, 2005, 47 (01) : 50 - 66
  • [22] Multiscale Finite Element Methods for Flows on Rough Surfaces
    Efendiev, Yalchin
    Galvis, Juan
    Pauletti, M. Sebastian
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 979 - 1000
  • [23] Grid adaptation for the Dirichlet-Neumann representation method and the multiscale mixed finite-element method
    Lie, Knut-Andreas
    Natvig, Jostein R.
    Krogstad, Stein
    Yang, Yahan
    Wu, Xiao-Hui
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (3-4) : 357 - 372
  • [24] Generalized Multiscale Finite Element Method for the poroelasticity problem in multicontinuum media
    Tyrylgin, Aleksei
    Vasilyeva, Maria
    Spiridonov, Denis
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374
  • [25] A variational multiscale stabilized finite element method for the Stokes flow problem
    Liu, XH
    Li, SF
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2006, 42 (07) : 580 - 591
  • [26] Generalized Multiscale Finite Element Method for piezoelectric problem in heterogeneous media
    Ammosov, Dmitry
    Vasilyeva, Maria
    Nasedkin, Andrey
    Efendiev, Yalchin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 12 - 25
  • [27] Generalized Multiscale Finite Element Method for scattering problem in heterogeneous media
    Kalachikova, Uygulaana
    Vasilyeva, Maria
    Harris, Isaac
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [28] A balancing Neumann-Neumann method for a mortar finite element discretization of a fourth order elliptic problem
    Marcinkowski, L.
    JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (03) : 219 - 234
  • [29] A MULTISCALE FINITE ELEMENT METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS POSED IN DOMAINS WITH ROUGH BOUNDARIES
    Madureira, Alexandre L.
    MATHEMATICS OF COMPUTATION, 2009, 78 (265) : 25 - 34
  • [30] Finite element approximation of the pure Neumann problem using the iterative penalty method
    Dai, Xiaoxia
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) : 1367 - 1373