A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
来源
MULTISCALE MODELING & SIMULATION | 2016年 / 14卷 / 04期
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [41] Refined mixed finite element method for the elasticity problem in a polygonal domain
    Farhloul, M
    Paquet, L
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (03) : 323 - 339
  • [42] A finite element method for elliptic optimal control problem in the unbounded domain
    Lin, Jitong
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [43] A MULTISCALE FINITE ELEMENT METHOD FOR THE SCHRODINGER EQUATION WITH MULTISCALE POTENTIALS
    Chen, Jingrun
    Ma, Dingjiong
    Zhang, Zhiwen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : B1115 - B1136
  • [44] A Dirichlet-to-Neumann finite element method for axisymmetric elastostatics in a semi-infinite domain
    Godoy, Eduardo
    Boccardo, Valeria
    Duran, Mario
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 1 - 26
  • [45] Convergence of a nonconforming multiscale finite element method
    Efendiev, YR
    Hou, TY
    Wu, XH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 888 - 910
  • [46] Variational eigenstrain multiscale finite element method
    Li, SF
    Gupta, A
    Liu, XH
    Mahyari, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (17-20) : 1803 - 1824
  • [47] A multiscale finite element method for the Helmholtz equation
    Oberai, AA
    Pinsky, PM
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 154 (3-4) : 281 - 297
  • [48] A hybrid multiscale finite element/peridynamics method
    Raymond A. Wildman
    James T. O’Grady
    George A. Gazonas
    International Journal of Fracture, 2017, 207 : 41 - 53
  • [49] Exponentially Convergent Multiscale Finite Element Method
    Chen, Yifan
    Hou, Thomas Y.
    Wang, Yixuan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 862 - 878
  • [50] Meshfree Generalized Multiscale Finite Element Method
    Nikiforov, Djulustan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474