A multiscale finite-element method

被引:28
|
作者
Rank, E
Krause, R
机构
[1] Numerische Methoden I., FB Bauwesen, University of Dortmund
关键词
D O I
10.1016/S0045-7949(96)00149-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes a hierarchical overlay of a p-version finite element approximation on a coarse mesh and an h-approximation on a geometrically independent fine mesh. The length scales of the local problem may be some orders of magnitude below the scale of the global problem. Despite the incompatibility of the meshes used, continuity can easily be guaranteed in the proposed method. The paper shows how finite element meshes can be constructed adaptively on the local and the global scales. It is demonstrated how a block-iteration allows a simple and efficient implementation of the method. Typical fields of application and the efficiency of the method are shown in a numerical example. (C) 1997 Civil-Comp Ltd and Elsevier Science Ltd.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [1] Validation of the multiscale mixed finite-element method
    Pal, Mayur
    Lamine, Sadok
    Lie, Knut-Andreas
    Krogstad, Stein
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (04) : 206 - 223
  • [2] Finite-element heterogeneous multiscale method for the Helmholtz equation
    Ciarlet, Patrick, Jr.
    Stohrer, Christian
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (09) : 755 - 760
  • [3] Multiscale finite-element method for linear elastic geomechanics
    Castelletto, Nicola
    Hajibeygi, Hadi
    Tchelepi, Hamdi A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 331 : 337 - 356
  • [4] Alternative multiscale material and structures modeling by the finite-element method
    H. B. Coda
    R. A. K. Sanches
    R. R. Paccola
    [J]. Engineering with Computers, 2022, 38 : 311 - 329
  • [5] Alternative multiscale material and structures modeling by the finite-element method
    Coda, H. B.
    Sanches, R. A. K.
    Paccola, R. R.
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 1) : 311 - 329
  • [6] A Multiscale Mixed Finite-Element Method for Vuggy and Naturally Fractured Reservoirs
    Gulbransen, Astrid Fossum
    Hauge, Vera Louise
    Lie, Knut-Andreas
    [J]. SPE JOURNAL, 2010, 15 (02): : 395 - 403
  • [7] FINITE-ELEMENT METHOD
    SALINAS, D
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1973, 54 (07) : 738 - 738
  • [8] Grid adaptation for the Dirichlet–Neumann representation method and the multiscale mixed finite-element method
    Knut-Andreas Lie
    Jostein R. Natvig
    Stein Krogstad
    Yahan Yang
    Xiao-Hui Wu
    [J]. Computational Geosciences, 2014, 18 : 357 - 372
  • [9] Combination of Multiscale Finite-Element Method and Yeh's Finite-Element Model for Solving Nodal Darcian Velocities and Fluxes in Porous Media
    Xie, Yifan
    Wu, Jichun
    Xue, Yuqun
    Xie, Chunhong
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2016, 21 (12)
  • [10] A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method
    Fu, Shubin
    Gao, Kai
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 211 (02) : 797 - 813