Noise reduction in microarray gene expression data based on spectral analysis

被引:11
|
作者
Tang, Vivian T. Y. [1 ]
Yan, Hong [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Autoregressive (AR) model; DNA microarray; Gene expression profiles; Singular spectrum analysis (SSA); Noise filtering;
D O I
10.1007/s13042-011-0039-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In genetic research, microarray chip carries thousands of genome expression profiles which allow biologists to analyze some of the developmental processes of life, such as biological reactions due to specific influences and so on. A main challenge of DNA microarray analysis is to separate the main gene expression from experimental noise. In order to ensure the accuracy of the following analysis, an effective noise filtering scheme is needed. In this paper, we propose a strategy to remove noise from gene expression profiles based on an autoregressive model based power spectrum analysis combined with singular spectrum analysis. This method helps us to determine the power spectrum effectively such that we can easily reconstruct the noise filtered time series signal.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 50 条
  • [12] Gene expression profile analysis of pancreatic cancer based on microarray data
    Long, Jin
    Liu, Zhe
    Wu, Xingda
    Xu, Yuanhong
    Ge, Chunlin
    MOLECULAR MEDICINE REPORTS, 2016, 13 (05) : 3913 - 3919
  • [13] Spatial clustering based gene selection for gene expression analysis in microarray data classification
    Dhas, P. Edwin
    Lalitha, S.
    Govindaraj, Annalakshmi
    Jyoshna, B.
    AUTOMATIKA, 2024, 65 (01) : 152 - 158
  • [14] Spectral analysis of two-signed microarray expression data
    Higham, Desmond J.
    Kalna, Gabriela
    Vass, J. Keith
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2007, 24 (02): : 131 - 148
  • [15] Model-based cluster analysis of microarray gene-expression data
    Wei Pan
    Jizhen Lin
    Chap T Le
    Genome Biology, 3 (2)
  • [16] Model-based cluster analysis of microarray gene-expression data
    Pan, Wei
    Lin, Jizhen
    Le, Chap T.
    GENOME BIOLOGY, 2002, 3 (02):
  • [17] GEPAS:: a web-based resource for microarray gene expression data analysis
    Herrero, J
    Al-Shahrour, F
    Díaz-Uriarte, R
    Mateos, A
    Vaquerizas, JM
    Santoyo, J
    Dopazo, J
    NUCLEIC ACIDS RESEARCH, 2003, 31 (13) : 3461 - 3467
  • [18] Differential analysis of DNA microarray gene expression data
    Hatfield, GW
    Hung, SP
    Baldi, P
    MOLECULAR MICROBIOLOGY, 2003, 47 (04) : 871 - 877
  • [19] AVA: visual analysis of gene expression microarray data
    Zhou, YH
    Liu, JD
    BIOINFORMATICS, 2003, 19 (02) : 293 - 294
  • [20] Gene expression (microarray) data analysis by chemometric methods
    Zhu, David X.
    Goeke, Richard J.
    Baker, David L.
    Hamburg, James H.
    Booth, David E.
    Booth, Stephane E.
    CURRENT ANALYTICAL CHEMISTRY, 2007, 3 (03) : 233 - 237