Noise reduction in microarray gene expression data based on spectral analysis

被引:11
|
作者
Tang, Vivian T. Y. [1 ]
Yan, Hong [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Autoregressive (AR) model; DNA microarray; Gene expression profiles; Singular spectrum analysis (SSA); Noise filtering;
D O I
10.1007/s13042-011-0039-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In genetic research, microarray chip carries thousands of genome expression profiles which allow biologists to analyze some of the developmental processes of life, such as biological reactions due to specific influences and so on. A main challenge of DNA microarray analysis is to separate the main gene expression from experimental noise. In order to ensure the accuracy of the following analysis, an effective noise filtering scheme is needed. In this paper, we propose a strategy to remove noise from gene expression profiles based on an autoregressive model based power spectrum analysis combined with singular spectrum analysis. This method helps us to determine the power spectrum effectively such that we can easily reconstruct the noise filtered time series signal.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 50 条
  • [41] A fisheye viewer for microarray-based gene expression data
    Wu, Min
    Thao, Cheng
    Mu, Xiangming
    Munson, Ethan V.
    BMC BIOINFORMATICS, 2006, 7 (1)
  • [42] Quality of feature selection based on microarray gene expression data
    Maciejewski, Henryk
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 3, 2008, 5103 : 140 - 147
  • [43] Belief combination for uncertainty reduction in microarray gene expression pattern analysis
    Cao, Kajia
    Zhu, Qiuming
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 844 - +
  • [44] Rasch-based high-dimensionality data reduction and class prediction with applications to microarray gene expression data
    Kastrin, Andrej
    Peterlin, Borut
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 5178 - 5185
  • [45] Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data
    Knowlton, N
    Dozmorov, IM
    Centola, M
    BIOINFORMATICS, 2004, 20 (18) : 3687 - 3690
  • [46] Visualization of microarray gene expression data
    Prasad, Tangirala Venkateswara
    Ahson, Syed Ismail
    BIOINFORMATION, 2006, 1 (04) : 141 - 145
  • [47] Analyzing microarray gene expression data
    Lewin, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 876 - 877
  • [48] A BASIC INTRODUCTION TO GENE EXPRESSION STUDIES USING MICROARRAY EXPRESSION DATA ANALYSIS
    Wanke, Dierk
    Kilian, Joachim
    QUANTUM BIO-INFORMATICS II: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2009, 24 : 314 - 326
  • [49] Microarray data analysis: From hypotheses to conclusions using gene expression data
    Armstrong, NJ
    van de Wiel, MA
    CELLULAR ONCOLOGY, 2004, 26 (5-6) : 279 - 290
  • [50] Gene function analysis in osteosarcoma based on microarray gene expression profiling
    Zhao, Liang
    Zhang, Jinghua
    Tan, Hongyu
    Wang, Weidong
    Liu, Yilin
    Song, Ruipeng
    Wang, Limin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (07): : 10401 - U1667