Noise reduction in microarray gene expression data based on spectral analysis

被引:11
|
作者
Tang, Vivian T. Y. [1 ]
Yan, Hong [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Autoregressive (AR) model; DNA microarray; Gene expression profiles; Singular spectrum analysis (SSA); Noise filtering;
D O I
10.1007/s13042-011-0039-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In genetic research, microarray chip carries thousands of genome expression profiles which allow biologists to analyze some of the developmental processes of life, such as biological reactions due to specific influences and so on. A main challenge of DNA microarray analysis is to separate the main gene expression from experimental noise. In order to ensure the accuracy of the following analysis, an effective noise filtering scheme is needed. In this paper, we propose a strategy to remove noise from gene expression profiles based on an autoregressive model based power spectrum analysis combined with singular spectrum analysis. This method helps us to determine the power spectrum effectively such that we can easily reconstruct the noise filtered time series signal.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 50 条
  • [31] Learning microarray gene expression data by hybrid discriminant analysis
    Lu, Yijuan
    Tian, Qi
    Sanchez, Maribel
    Neary, Jennifer
    Liu, Feng
    Wang, Yufeng
    IEEE MULTIMEDIA, 2007, 14 (04) : 22 - 31
  • [32] Quantitative trait associated microarray gene expression data analysis
    Qu, Yi
    Xu, Shizhong
    MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (08) : 1558 - 1573
  • [33] A mixture model approach for the analysis of microarray gene expression data
    Allison, David B.
    Gadbury, Gary L.
    Heo, Moonseong
    Fernández, José R.
    Lee, Cheol-Koo
    Prolla, Tomas A.
    Weindruch, Richard
    Computational Statistics and Data Analysis, 2002, 38 (05): : 1 - 20
  • [34] Analysis of Microarray Gene Expression Data Using a Mixture Model
    Bartolucci, Al
    Allison, David B.
    Bae, Sejong
    Singh, Karan P.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 2867 - 2869
  • [35] Clustering analysis of microarray gene expression data by splitting algorithm
    Wang, RY
    Scharenbroich, L
    Hart, C
    Wold, B
    Mjolsness, E
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (7-8) : 692 - 706
  • [36] A mixture model approach for the analysis of microarray gene expression data
    Allison, DB
    Gadbury, GL
    Heo, MS
    Fernández, JR
    Lee, CK
    Prolla, TA
    Weindruch, R
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) : 1 - 20
  • [37] A novel clustering method for analysis of gene microarray expression data
    Luo, F
    Liu, J
    DATA MINING FOR BIOMEDICAL APPLICATIONS, PROCEEDINGS, 2006, 3916 : 71 - 81
  • [38] Hybrid PCA and LDA analysis of microarray gene expression data
    Lu, YJ
    Tian, Q
    Sanchez, M
    Wang, YF
    PROCEEDINGS OF THE 2005 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2005, : 372 - 377
  • [39] An evolutionary clustering algorithm for gene expression microarray data analysis
    Ma, Patrick C. H.
    Chan, Keith C. C.
    Yao, Xin
    Chiu, David K. Y.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) : 296 - 314
  • [40] A fisheye viewer for microarray-based gene expression data
    Min Wu
    Cheng Thao
    Xiangming Mu
    Ethan V Munson
    BMC Bioinformatics, 7