An evolutionary clustering algorithm for gene expression microarray data analysis

被引:71
|
作者
Ma, Patrick C. H. [1 ]
Chan, Keith C. C.
Yao, Xin
Chiu, David K. Y.
机构
[1] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[2] Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham B15 2TT, W Midlands, England
[3] Univ Guelph, Biophys Interdept Grp, Guelph, ON N1G 2W1, Canada
[4] Univ Guelph, Dept Comp & Informat Sci, Guelph, ON N1G 2W1, Canada
关键词
bioinformatics; clustering; DNA sequence analysis; evolutionary algorithms (EAs); gene expression microarray data analysis;
D O I
10.1109/TEVC.2005.859371
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is concerned with the discovery of interesting groupings of records in a database. Many algorithms have been developed to tackle clustering problems in a variety of application domains. In particular, some of them have been used in bioinformatics research to uncover inherent clusters in gene expression microarray data. In this paper, we show how some popular clustering algorithms have been used for this purpose. Based on experiments using simulated and real data, we also show that the performance of these algorithms can be further improved. For more effective clustering of gene expression microarray data, which is typically characterized by a lot of noise, we propose a novel evolutionary algorithm called evolutionary clustering (EvoCluster). EvoCluster encodes an entire cluster grouping in a chromosome so that each gene in the chromosome encodes one cluster. Based on such encoding scheme, it makes use of a set of reproduction operators to facilitate the exchange of grouping information between chromosomes. The fitness function that the EvoCluster adopts is able to differentiate between how relevant a feature value is in determining a particular cluster grouping. As such, instead of just local pairwise distances, it also takes into consideration how clusters are arranged globally. Unlike many popular clustering algorithms, EvoCluster does not require the number of clusters to be decided in advance. Also, patterns hidden in each cluster can be explicitly revealed and presented for easy interpretation even by casual users. For performance evaluation, we have tested EvoCluster using both simulated and real data. Experimental results show that it can be very effective and robust even in the presence of noise and missing values. Also, when correlating the gene expression microarray data with DNA sequences, we were able to uncover significant biological binding sites (both previously known and unknown) in each cluster discovered by EvoCluster.
引用
收藏
页码:296 / 314
页数:19
相关论文
共 50 条
  • [1] Clustering analysis of microarray gene expression data by splitting algorithm
    Wang, RY
    Scharenbroich, L
    Hart, C
    Wold, B
    Mjolsness, E
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (7-8) : 692 - 706
  • [2] An Evolutionary Gene Expression Microarray Clustering Algorithm Based on Optimized Experimental Conditions
    Sen, Mrinal
    Chaudhury, Sheli Sinha
    Konar, Amit
    Janarthanan, R.
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 759 - +
  • [3] A novel clustering method for analysis of gene microarray expression data
    Luo, F
    Liu, J
    DATA MINING FOR BIOMEDICAL APPLICATIONS, PROCEEDINGS, 2006, 3916 : 71 - 81
  • [4] Clustering analysis of microarray gene expression data with new clustering ensemble method
    Luo, Fei
    Liu, Juan
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 500 - 504
  • [5] Clustering methods for microarray gene expression data
    Belacel, Nabil
    Wang, Qian
    Cuperlovic-Culf, Miroslava
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) : 507 - 531
  • [6] FPF-SB:: A scalable algorithm for microarray gene expression data clustering
    Geraci, Filippo
    Leoncini, Mauro
    Montangero, Manuela
    Pellegrini, Marco
    Renda, M. Elena
    DIGITAL HUMAN MODELING, 2007, 4561 : 606 - 615
  • [7] Gene Screening and Clustering of Yeast Microarray Gene Expression Data
    Lee, Kyunga
    Kim, Taehoun
    Kim, Jaehee
    KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (06) : 1077 - 1094
  • [8] An improved quantum-inspired evolutionary algorithm for clustering gene expression data
    Zhou, W. G.
    Zhou, C. G.
    Liu, G. X.
    Lv, H. Y.
    Liang, Y. C.
    COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1351 - +
  • [9] Spatial clustering based gene selection for gene expression analysis in microarray data classification
    Dhas, P. Edwin
    Lalitha, S.
    Govindaraj, Annalakshmi
    Jyoshna, B.
    AUTOMATIKA, 2024, 65 (01) : 152 - 158
  • [10] Clustering of Association Rules on Microarray Gene Expression Data
    Alagukumar, S.
    Vanitha, C. Devi Arockia
    Lawrance, R.
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 85 - 97