Model-based cluster analysis of microarray gene-expression data

被引:0
|
作者
Pan, Wei [1 ]
Lin, Jizhen [2 ]
Le, Chap T. [1 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Otolaryngol, Sch Med, Minneapolis, MN 55455 USA
来源
GENOME BIOLOGY | 2002年 / 3卷 / 02期
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Microarray technologies are emerging as a promising tool for genomic studies. The challenge now is how to analyze the resulting large amounts of data. Clustering techniques have been widely applied in analyzing microarray gene-expression data. However, normal mixture model-based cluster analysis has not been widely used for such data, although it has a solid probabilistic foundation. Here, we introduce and illustrate its use in detecting differentially expressed genes. In particular, we do not cluster gene-expression patterns but a summary statistic, the t-statistic. Results: The method is applied to a data set containing expression levels of 1,176 genes of rats with and without pneumococcal middle-ear infection. Three clusters were found, two of which contain more than 95% genes with almost no altered gene-expression levels, whereas the third one has 30 genes with more or less differential gene-expression levels. Conclusions: Our results indicate that model-based clustering of t-statistics (and possibly other summary statistics) can be a useful statistical tool to exploit differential gene expression for microarray data.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Model-based cluster analysis of microarray gene-expression data
    Wei Pan
    Jizhen Lin
    Chap T Le
    [J]. Genome Biology, 3 (2):
  • [2] Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    Pan, W
    [J]. BIOINFORMATICS, 2006, 22 (07) : 795 - 801
  • [3] On the classification of microarray gene-expression data
    Basford, Kaye E.
    McLachlan, Geoffrey J.
    Rathnayake, Suren I.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2013, 14 (04) : 402 - 410
  • [4] INTEGRATIVE MODEL-BASED CLUSTERING OF MICROARRAY METHYLATION AND EXPRESSION DATA
    Kormaksson, Matthias
    Booth, James G.
    Figueroa, Maria E.
    Melnick, Ari
    [J]. ANNALS OF APPLIED STATISTICS, 2012, 6 (03): : 1327 - 1347
  • [5] A mixture model-based approach to the clustering of microarray expression data
    McLachlan, GJ
    Bean, RW
    Peel, D
    [J]. BIOINFORMATICS, 2002, 18 (03) : 413 - 422
  • [6] Cluster ensemble for gene expression Microarray data
    de Souto, MCP
    Silva, SCM
    Bittencourtt, VG
    de Araujo, DSA
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 487 - 492
  • [7] Key aspects of analyzing microarray gene-expression data
    Chen, James J.
    [J]. PHARMACOGENOMICS, 2007, 8 (05) : 473 - 482
  • [8] Local Modeling Classifier for Microarray Gene-Expression Data
    Porto-Diaz, Iago
    Bolon-Canedo, Veronica
    Alonso-Betanzos, Amparo
    Fontenla-Romero, Oscar
    [J]. ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III, 2010, 6354 : 11 - 20
  • [9] Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data
    Luan, Y
    Li, H
    [J]. BIOINFORMATICS, 2004, 20 (03) : 332 - 339
  • [10] Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
    Martin Ehler
    Vinodh N Rajapakse
    Barry R Zeeberg
    Brian P Brooks
    Jacob Brown
    Wojciech Czaja
    Robert F Bonner
    [J]. BMC Proceedings, 5 (Suppl 2)