Cluster ensemble for gene expression Microarray data

被引:0
|
作者
de Souto, MCP [1 ]
Silva, SCM [1 ]
Bittencourtt, VG [1 ]
de Araujo, DSA [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59072970 Natal, RN, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble techniques have been successfully applied in the context of supervised learning to increase the accuracy and stability of classification. Recently, similar techniques have been proposed for clustering, algorithms. In this context, we analyze the potential of applying cluster ensemble techniques to gene expression microarray data. Our experimental results show that there is often a significant improvement in the results obtained with the use of ensemble when compared to those based on the clustering techniques used individually.
引用
收藏
页码:487 / 492
页数:6
相关论文
共 50 条
  • [1] Cluster ensemble for gene expression microarray data: Accuracy and diversity
    de Souto, Marcilio C. P.
    de Araujo, Daniel S. A.
    da Silva, Bruno L. C.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 2174 - +
  • [2] Cluster-Rasch models for microarray gene expression data
    Hongzhe Li
    Fangxin Hong
    [J]. Genome Biology, 2 (8):
  • [3] Cluster-Rasch models for microarray gene expression data
    Li, Hongzhe
    Hong, Fangxin
    [J]. GENOME BIOLOGY, 2001, 2 (08):
  • [4] Application of Gene Shaving and Mixture Models to Cluster Microarray Gene Expression Data
    Do, K-A.
    McLachlan, G.
    Bean, R.
    Wen, S.
    [J]. CANCER INFORMATICS, 2007, 5 : 25 - 43
  • [5] CLUSTER IDENTIFICATION FOR MICROARRAY GENE EXPRESSION DATA UNDER CONFLICT OF INTEREST
    Subramanian, Anandhavalli
    Srivatsa, Srinivasa Krishna
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (03): : 1113 - 1126
  • [6] Clustering analysis of microarray gene expression data with new clustering ensemble method
    Luo, Fei
    Liu, Juan
    [J]. PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 500 - 504
  • [7] An efficient ensemble method for missing value imputation in microarray gene expression data
    Zhu, Xinshan
    Wang, Jiayu
    Sun, Biao
    Ren, Chao
    Yang, Ting
    Ding, Jie
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [8] An efficient ensemble method for missing value imputation in microarray gene expression data
    Xinshan Zhu
    Jiayu Wang
    Biao Sun
    Chao Ren
    Ting Yang
    Jie Ding
    [J]. BMC Bioinformatics, 22
  • [9] Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
    Martin Ehler
    Vinodh N Rajapakse
    Barry R Zeeberg
    Brian P Brooks
    Jacob Brown
    Wojciech Czaja
    Robert F Bonner
    [J]. BMC Proceedings, 5 (Suppl 2)
  • [10] Model-based cluster analysis of microarray gene-expression data
    Wei Pan
    Jizhen Lin
    Chap T Le
    [J]. Genome Biology, 3 (2):