Cluster-Rasch models for microarray gene expression data

被引:0
|
作者
Li, Hongzhe [1 ]
Hong, Fangxin
机构
[1] Univ Calif Davis, Rowe Program Human Genet, Dept Med, Davis, CA 95616 USA
来源
GENOME BIOLOGY | 2001年 / 2卷 / 08期
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: We propose two different formulations of the Rasch statistical models to the problem of relating gene expression profiles to the phenotypes. One formulation allows us to investigate whether a cluster of genes with similar expression profiles is related to the observed phenotypes; this model can also be used for future prediction. The other formulation provides an alternative way of identifying genes that are over- or underexpressed from their expression levels in tissue or cell samples of a given tissue or cell type. Results: We illustrate the methods on available datasets of a classification of acute leukemias and of 60 cancer cell lines. For tumor classification, the results are comparable to those previously obtained. For the cancer cell lines dataset, we found four clusters of genes that are related to drug response for many of the 90 drugs that we considered. In addition, for each type of cell line, we identified genes that are over- or underexpressed relative to other genes. Conclusions: The cluster-Rasch model provides a probabilistic model for describing gene expression patterns across samples and can be used to relate gene expression profiles to phenotypes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Cluster-Rasch models for microarray gene expression data
    Hongzhe Li
    Fangxin Hong
    [J]. Genome Biology, 2 (8):
  • [2] Application of Gene Shaving and Mixture Models to Cluster Microarray Gene Expression Data
    Do, K-A.
    McLachlan, G.
    Bean, R.
    Wen, S.
    [J]. CANCER INFORMATICS, 2007, 5 : 25 - 43
  • [3] Cluster ensemble for gene expression Microarray data
    de Souto, MCP
    Silva, SCM
    Bittencourtt, VG
    de Araujo, DSA
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 487 - 492
  • [4] Cluster ensemble for gene expression microarray data: Accuracy and diversity
    de Souto, Marcilio C. P.
    de Araujo, Daniel S. A.
    da Silva, Bruno L. C.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 2174 - +
  • [5] Bayesian models for gene expression with DNA microarray data
    Ibrahim, JG
    Chen, MH
    Gray, RJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 88 - 99
  • [6] Covariance structure models for gene expression microarray data
    Xie, J
    Bentler, PM
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2003, 10 (04) : 566 - 582
  • [7] Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data
    He, Yi
    Pan, Wei
    Lin, Jizhen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 641 - 658
  • [8] CLUSTER IDENTIFICATION FOR MICROARRAY GENE EXPRESSION DATA UNDER CONFLICT OF INTEREST
    Subramanian, Anandhavalli
    Srivatsa, Srinivasa Krishna
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (03): : 1113 - 1126
  • [9] Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
    Martin Ehler
    Vinodh N Rajapakse
    Barry R Zeeberg
    Brian P Brooks
    Jacob Brown
    Wojciech Czaja
    Robert F Bonner
    [J]. BMC Proceedings, 5 (Suppl 2)
  • [10] Model-based cluster analysis of microarray gene-expression data
    Wei Pan
    Jizhen Lin
    Chap T Le
    [J]. Genome Biology, 3 (2):