Cluster-Rasch models for microarray gene expression data

被引:0
|
作者
Li, Hongzhe [1 ]
Hong, Fangxin
机构
[1] Univ Calif Davis, Rowe Program Human Genet, Dept Med, Davis, CA 95616 USA
来源
GENOME BIOLOGY | 2001年 / 2卷 / 08期
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: We propose two different formulations of the Rasch statistical models to the problem of relating gene expression profiles to the phenotypes. One formulation allows us to investigate whether a cluster of genes with similar expression profiles is related to the observed phenotypes; this model can also be used for future prediction. The other formulation provides an alternative way of identifying genes that are over- or underexpressed from their expression levels in tissue or cell samples of a given tissue or cell type. Results: We illustrate the methods on available datasets of a classification of acute leukemias and of 60 cancer cell lines. For tumor classification, the results are comparable to those previously obtained. For the cancer cell lines dataset, we found four clusters of genes that are related to drug response for many of the 90 drugs that we considered. In addition, for each type of cell line, we identified genes that are over- or underexpressed relative to other genes. Conclusions: The cluster-Rasch model provides a probabilistic model for describing gene expression patterns across samples and can be used to relate gene expression profiles to phenotypes.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Stochastic models for inferring genetic regulation from microarray gene expression data
    Tian, Tianhai
    [J]. BIOSYSTEMS, 2010, 99 (03) : 192 - 200
  • [22] Data mining and visualisation of microarray gene expression data
    Alan Robinson
    Alvis Brazma
    [J]. Nature Genetics, 1999, 23 (Suppl 3) : 71 - 71
  • [23] Complementary use of cluster analysis and biplots to discover and validate patterns of gene expression in microarray data
    Bassani, Niccolo
    Ambrogi, Federico
    Coradini, Danila
    Boracchi, Patrizia
    Biganzoli, Elia
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [24] Assessing gene significance from cDNA microarray expression data via mixed models
    Wolfinger, RD
    Gibson, G
    Wolfinger, ED
    Bennett, L
    Hamadeh, H
    Bushel, P
    Afshari, C
    Paules, RS
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (06) : 625 - 637
  • [25] Analysis of variance for gene expression microarray data
    Kerr, MK
    Martin, M
    Churchill, GA
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) : 819 - 837
  • [26] Mixture modeling of microarray gene expression data
    Yang Yang
    Adam P Tashman
    Jung Yeon Lee
    Seungtai Yoon
    Wenyang Mao
    Kwangmi Ahn
    Wonkuk Kim
    Nancy R Mendell
    Derek Gordon
    Stephen J Finch
    [J]. BMC Proceedings, 1 (Suppl 1)
  • [27] Microarray Data Analysis of Gene Expression Evolution
    Lin, Honghuang
    [J]. GENE REGULATION AND SYSTEMS BIOLOGY, 2009, 3 : 211 - 214
  • [28] A gene expression bar code for microarray data
    Michael J Zilliox
    Rafael A Irizarry
    [J]. Nature Methods, 2007, 4 : 911 - 913
  • [29] A gene expression bar code for microarray data
    Zilliox, Michael J.
    Irizarry, Rafael A.
    [J]. NATURE METHODS, 2007, 4 (11) : 911 - 913
  • [30] Vector Quantization of Microarray Gene Expression Data
    Prasad, T. V.
    Kohli, Maitrei
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL I, 2010, : 231 - 235