Cluster-Rasch models for microarray gene expression data

被引:0
|
作者
Li, Hongzhe [1 ]
Hong, Fangxin
机构
[1] Univ Calif Davis, Rowe Program Human Genet, Dept Med, Davis, CA 95616 USA
来源
GENOME BIOLOGY | 2001年 / 2卷 / 08期
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: We propose two different formulations of the Rasch statistical models to the problem of relating gene expression profiles to the phenotypes. One formulation allows us to investigate whether a cluster of genes with similar expression profiles is related to the observed phenotypes; this model can also be used for future prediction. The other formulation provides an alternative way of identifying genes that are over- or underexpressed from their expression levels in tissue or cell samples of a given tissue or cell type. Results: We illustrate the methods on available datasets of a classification of acute leukemias and of 60 cancer cell lines. For tumor classification, the results are comparable to those previously obtained. For the cancer cell lines dataset, we found four clusters of genes that are related to drug response for many of the 90 drugs that we considered. In addition, for each type of cell line, we identified genes that are over- or underexpressed relative to other genes. Conclusions: The cluster-Rasch model provides a probabilistic model for describing gene expression patterns across samples and can be used to relate gene expression profiles to phenotypes.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Cluster Analysis of Gene Expression Data
    Eytan Domany
    [J]. Journal of Statistical Physics, 2003, 110 : 1117 - 1139
  • [42] Gene Expression Data Cluster Analysis
    Guo, Ping
    Deng, Xiao-yan
    [J]. 2009 WASE INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING, ICIE 2009, VOL I, 2009, : 99 - 102
  • [43] Cluster analysis of gene expression data
    Domany, E
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (3-6) : 1117 - 1139
  • [44] Survival analysis of microarray expression data by transformation models
    Xu, JF
    Yang, YN
    Ott, J
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2005, 29 (02) : 91 - 94
  • [45] Identifying Metabolic Pathway within Microarray Gene Expression Data Using Combination of Probabilistic Models
    Salleh, Abdul Hakim Mohamed
    Mohamad, Mohd Saberi
    [J]. KNOWLEDGE TECHNOLOGY, 2012, 295 : 52 - 61
  • [46] Optimization models for cancer classification: extracting gene interaction information from microarray expression data
    Antonov, AV
    Tetko, IV
    Mader, MT
    Budczies, J
    Mewes, HW
    [J]. BIOINFORMATICS, 2004, 20 (05) : 644 - U145
  • [47] MIDGET:Detecting differential gene expression on microarray data
    Angelescu, Radu
    Dobrescu, Radu
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 211
  • [48] Quick hierarchical biclustering on microarray gene expression data
    Ji, Liping
    Mock, Kenneth Wei-Liang
    Tan, Kian-Lee
    [J]. BIBE 2006: SIXTH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, PROCEEDINGS, 2006, : 110 - +
  • [49] A genetic approach for gene selection on microarray expression data
    Kim, YH
    Lee, SY
    Moon, BR
    [J]. GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2004, PT 1, PROCEEDINGS, 2004, 3102 : 346 - 355
  • [50] GEPRO: Gene Expression Profiler for DNA microarray data
    Kim, Beob G.
    Lindemann, Merlin D.
    Bridges, Phillip J.
    Ko, CheMyong
    [J]. REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2009, 22 (01) : 12 - 18