Survival analysis of microarray expression data by transformation models

被引:9
|
作者
Xu, JF [1 ]
Yang, YN
Ott, J
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Rockefeller Univ, Lab Stat Genet, New York, NY 10021 USA
[3] Univ Sci & Technol China, Dept Stat & Finance, Anhua 230026, Peoples R China
关键词
microarray; proportional hazards model; transformation models;
D O I
10.1016/j.compbiolchem.2005.02.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many microarray experiments involve examining the time elapsed prior to the occurrence of a specific event. One purpose of these studies is to relate the gene expressions to the survival times. The Cox proportional hazards model has been the major tool for analyzing such data. The transformation model provides a viable alternative to the classical Cox's model. We investigate the use of transformation models in microarray survival data in this paper. The transformation model, which can be viewed as a generalization of proportional hazards model and the proportional odds model, is more robust than the proportional hazards model, because it is not susceptible to erroneous results for cases when the assumption of proportional hazards is violated. We analyze a gene expression dataset from Beer et al. [Beer, D.G., Kardia, S.L., Huang, C.C., Giordano, T.J., Levin, A.M., Misek, D.E., Lin, L., Chen, G., Gharib, T.G., Thomas, D.G., Lizyness, M.L., Kuick, R., Hayasaka, S., Taylor, J.M., lannettoni, M.D., Orringer, M.B., Hanash, S., 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8 (8), 816-824] and show that the transformation model provides higher prediction precision than the proportional hazards model. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 50 条
  • [1] Analysis of microarray expression data
    Paul Kellam
    Genome Biology, 1 (1)
  • [2] Assessment of survival prediction models based on microarray data
    Schumacher, Martin
    Binder, Harald
    Gerds, Thomas
    BIOINFORMATICS, 2007, 23 (14) : 1768 - 1774
  • [3] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [4] Analysis of DNA microarray expression data
    Simon, Richard
    BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2009, 22 (02) : 271 - 282
  • [5] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [6] Multiple testing in the survival analysis of microarray data
    Correa, JA
    Dudoit, S
    Goldstein, DR
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2002, 10 : 298 - 298
  • [7] The dChip survival analysis module for microarray data
    Amin, Samir B.
    Shah, Parantu K.
    Yan, Aimin
    Adamia, Sophia
    Minvielle, Stephane
    Avet-Loiseau, Herve
    Munshi, Nikhil C.
    Li, Cheng
    BMC BIOINFORMATICS, 2011, 12
  • [8] The dChip survival analysis module for microarray data
    Samir B Amin
    Parantu K Shah
    Aimin Yan
    Sophia Adamia
    Stéphane Minvielle
    Hervé Avet-Loiseau
    Nikhil C Munshi
    Cheng Li
    BMC Bioinformatics, 12
  • [9] Semiparametric Transformation Models for Semicompeting Survival Data
    Lin, Huazhen
    Zhou, Ling
    Li, Chunhong
    Li, Yi
    BIOMETRICS, 2014, 70 (03) : 599 - 607
  • [10] Bayesian Transformation Models for Multivariate Survival Data
    de Castro, Mario
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Klein, John P.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (01) : 187 - 199