Analysis of DNA microarray expression data

被引:34
|
作者
Simon, Richard [1 ]
机构
[1] NCI, Biometr Res Branch, Div Canc Treatment & Diag, Bethesda, MD 20892 USA
关键词
bioinformatics; biomarkers; gene expression signatures; microarray data analysis; GENE-EXPRESSION; SAMPLE-SIZE; MOLECULAR CLASSIFICATION; NORMALIZATION METHODS; CLASS PREDICTION; CANCER; BREAST; DISCOVERY; VALIDATION; PATTERNS;
D O I
10.1016/j.beha.2009.07.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
DNA microarrays are powerful tools for studying biological mechanisms and for developing prognostic and predictive classifiers for identifying the patients who require treatment and are best candidates for specific treatments. Because microarrays produce so much data from each specimen, they offer great opportunities for discovery and great dangers or producing misleading claims. Microarray based studies require clear objectives for selecting cases and appropriate analysis methods. Effective analysis of microarray data, where the number of measured variables is orders of magnitude greater than the number of cases, requires specialized statistical methods which have recently been developed. Recent literature reviews indicate that serious problems of analysis exist a substantial proportion of publications. This manuscript attempts to provide a non-technical summary of the key principles of statistical design and analysis for studies that utilize microarray expression profiling. Published by Elsevier Ltd.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 50 条
  • [1] Control analysis of DNA microarray expression data
    Curtis, RK
    Brand, MD
    [J]. MOLECULAR BIOLOGY REPORTS, 2002, 29 (1-2) : 67 - 71
  • [2] Control Analysis of DNA Microarray Expression Data
    R. Keira Curtis
    Martin D. Brand
    [J]. Molecular Biology Reports, 2002, 29 : 67 - 71
  • [3] Differential analysis of DNA microarray gene expression data
    Hatfield, GW
    Hung, SP
    Baldi, P
    [J]. MOLECULAR MICROBIOLOGY, 2003, 47 (04) : 871 - 877
  • [4] DNA microarray expression analysis and data mining for blood cancer
    Li, Dongguang
    [J]. FBIE: 2008 INTERNATIONAL SEMINAR ON FUTURE BIOMEDICAL INFORMATION ENGINEERING, PROCEEDINGS, 2008, : 377 - 381
  • [5] DNA microarray data imputation and significance analysis of differential expression
    Jörnsten, R
    Wang, HY
    Welsh, WJ
    Ouyang, M
    [J]. BIOINFORMATICS, 2005, 21 (22) : 4155 - 4161
  • [6] Analysis of DNA microarray data
    Hackl, H
    Cabo, FS
    Sturn, A
    Wolkenhauer, O
    Trajanoski, Z
    [J]. CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2004, 4 (13) : 1357 - 1370
  • [7] Analysis of microarray expression data
    Paul Kellam
    [J]. Genome Biology, 1 (1):
  • [9] Constrained Competitive Learning Algorithm for DNA Microarray Gene Expression Data Analysis
    Wu, Shuanhu
    Yan, Hong
    Zeng, Qingshang
    Zhang, Yanjie
    Song, Yibin
    [J]. INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL 1, PROCEEDINGS, 2008, : 44 - +
  • [10] Independent component analysis of Alzheimer's DNA microarray gene expression data
    Kong, Wei
    Mou, Xiaoyang
    Liu, Qingzhong
    Chen, Zhongxue
    Vanderburg, Charles R.
    Rogers, Jack T.
    Huang, Xudong
    [J]. MOLECULAR NEURODEGENERATION, 2009, 4