Here, we review briefly the sources of experimental and biological variance that affect the interpretation of high-dimensional DNA microarray experiments. We discuss methods using a regularized t-test based on a Bayesian statistical framework that allow the identification of differentially regulated genes with a higher level of confidence than a simple t-test when only a few experimental replicates are available. We also describe a computational method for calculating the global false-positive and false-negative levels inherent in a DNA microarray data set. This method provides a probability of differential expression for each gene based on experiment-wide false-positive and -negative levels driven by experimental error and biological variance.
机构:
Univ Politehn Bucuresti, Fac Automat Control & Comp Sci, Dept Automat Control & Ind Informat, Splaiul Independentei 313,Sect 6, Bucharest 060042, RomaniaUniv Politehn Bucuresti, Fac Automat Control & Comp Sci, Dept Automat Control & Ind Informat, Splaiul Independentei 313,Sect 6, Bucharest 060042, Romania
Angelescu, Radu
Dobrescu, Radu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politehn Bucuresti, Fac Automat Control & Comp Sci, Dept Automat Control & Ind Informat, Splaiul Independentei 313,Sect 6, Bucharest 060042, RomaniaUniv Politehn Bucuresti, Fac Automat Control & Comp Sci, Dept Automat Control & Ind Informat, Splaiul Independentei 313,Sect 6, Bucharest 060042, Romania