Constrained Competitive Learning Algorithm for DNA Microarray Gene Expression Data Analysis

被引:0
|
作者
Wu, Shuanhu [1 ,2 ]
Yan, Hong [2 ,3 ]
Zeng, Qingshang [1 ]
Zhang, Yanjie [1 ]
Song, Yibin [1 ]
机构
[1] Yantai Univ, Sch Comp Sci & Technol, Yantai 264005, Shandong, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Kowloon, Peoples R China
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICICTA.2008.7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cluster analysis is an important tool for discovering the structures and patterns hidden in gene expression data. In this paper, a new algorithm for clustering gene expression profiles is proposed. In this method, we find natural clusters in the data based on a competitive learning strategy. Using partially known modes as constraints in our method, we reduce the sensitivity Of the clustering procedure to the algorithm initialization and produce more reliable results. Also the proposed algorithm can give the correct estimation of the number of clusters in the data. Experiments on simulated and real gene expression data demonstrate the robustness of our method. Comparative studies with several other clustering algorithms illustrated the effectiveness of our method.
引用
收藏
页码:44 / +
页数:2
相关论文
共 50 条
  • [1] Differential analysis of DNA microarray gene expression data
    Hatfield, GW
    Hung, SP
    Baldi, P
    [J]. MOLECULAR MICROBIOLOGY, 2003, 47 (04) : 871 - 877
  • [2] Clustering analysis of microarray gene expression data by splitting algorithm
    Wang, RY
    Scharenbroich, L
    Hart, C
    Wold, B
    Mjolsness, E
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (7-8) : 692 - 706
  • [3] An evolutionary clustering algorithm for gene expression microarray data analysis
    Ma, Patrick C. H.
    Chan, Keith C. C.
    Yao, Xin
    Chiu, David K. Y.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) : 296 - 314
  • [4] Learning microarray gene expression data by hybrid discriminant analysis
    Lu, Yijuan
    Tian, Qi
    Sanchez, Maribel
    Neary, Jennifer
    Liu, Feng
    Wang, Yufeng
    [J]. IEEE MULTIMEDIA, 2007, 14 (04) : 22 - 31
  • [5] Analysis of DNA microarray expression data
    Simon, Richard
    [J]. BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2009, 22 (02) : 271 - 282
  • [6] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    [J]. CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [7] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    [J]. 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [8] Bayesian models for gene expression with DNA microarray data
    Ibrahim, JG
    Chen, MH
    Gray, RJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 88 - 99
  • [9] GEPRO: Gene Expression Profiler for DNA microarray data
    Kim, Beob G.
    Lindemann, Merlin D.
    Bridges, Phillip J.
    Ko, CheMyong
    [J]. REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2009, 22 (01) : 12 - 18
  • [10] Independent component analysis of Alzheimer's DNA microarray gene expression data
    Kong, Wei
    Mou, Xiaoyang
    Liu, Qingzhong
    Chen, Zhongxue
    Vanderburg, Charles R.
    Rogers, Jack T.
    Huang, Xudong
    [J]. MOLECULAR NEURODEGENERATION, 2009, 4